Skip to main content
Log in

Hydraulics of free overfall in Δ-shaped channels

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

In this paper, two methods are presented to analyse the free overfall in δ-shaped (equilateral triangle-shaped) channels. First, the flow upstream of a free overfall from smooth horizontal or mildly sloping Δ-shaped channels is analysed theoretically to determine the end-depth-ratio (EDR), applying the momentum equation based on the Boussinesq approximation. Second, an alternate method for analysing free overfall in Δ-shaped channels is also presented where the flow over a free overfall in a Δ-shaped channel is simulated by that over a sharp-crested weir to calculate the EDR. The method of estimation of discharge from the known end depth is also presented for both the methods. These approaches eliminate the need of an experimentally determined pressure coefficient. Experiments are conducted to verify the results obtained from the present methods. Comparisons of the computed and experimental results are satisfactory

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali K H M, Sykes A1972 Free-vortex theory applied to free overfall.J. Hydraul. Div., Am. Soc. Civ. Eng. 98: 973–979

    Google Scholar 

  • Anastasiadou-Partheniou L, Hatzigiannakis E 1995 General end-depth-discharge relationship at free overfall in trapezoidal channel.J. Irrig. Drain. Eng., Am. Soc. Civ. Eng. 121: 143–151

    Article  Google Scholar 

  • Anderson M V 1967 Non-uniform flow in front of a free overfall.Acta Polytech. Scand, 42: 1–24

    Google Scholar 

  • Bauer S W, Graf W H 1971 Free overfall as flow measuring device.J. Irrig. Drain. Div, Am. Soc. Civ. Eng. 97: 73–83

    Google Scholar 

  • Chow W L, Han T 1979 Inviscid solution for the problem of the free overfall.J. Appl. Mech. 46: 1–5

    MATH  Google Scholar 

  • Clausnitzer B, Hager W H 1997 Outflow characteristics from circular pipe.J. Hydraul. Eng., Am. Soc. Civ. Eng. 123: 914–917

    Article  Google Scholar 

  • Clarke N S 1965 On two-dimensional inviscid flow in a waterfall.J. Fluid Mech. 22: 359–369

    Article  MATH  Google Scholar 

  • Davis A C, Ellett B G S, Jacob R P 1998 Flow measurement in sloping channels with rectangular free overfall.J. Hydraul. Eng., Am. Soc. Civ. Eng. 124: 760–763

    Article  Google Scholar 

  • Davis A C, Jacob R P, Ellett B G S 1999 Estimating trajectory of free overfall nappe.J. Hydraul. Eng., Am. Soc. Civ. Eng. 125: 79–82

    Article  Google Scholar 

  • Delleur J W, Dooge J C I, Gent K W 1956 Influence of slope and roughness on the free overfall.J. Hydraul. Div., Am. Soc. Civ. Eng. 82: 30–35

    Google Scholar 

  • Dey S 1998a Free overfall in rough rectangular channels: a computational approach.Water, Maritime and Energy, Proc. Inst. Civ. Eng. (London) 130: 51–54

    Article  Google Scholar 

  • Dey S 1998b End depth in circular channels.J. Hydraul. Eng., Am. Soc. Civ. Eng. 124: 856–863

    Article  Google Scholar 

  • Dey S 2000 End depth in steeply sloping rough rectangular channels.Sādhanā 25: 1–10

    Google Scholar 

  • Dey S 2001a The EDR in circular channels.J. Irrig. Drain. Eng., Am. Soc. Civ. Eng. 127: 110–112

    Article  Google Scholar 

  • Dey S 2001b Flow metering by end-depth method in elliptic channels.Dam Eng. 12: 5–19

    Google Scholar 

  • Dey S 2001c Flow measurement by the end-depth method in inverted semicircular channels.Flow Measure Instrum. 12: 253–258.

    Article  Google Scholar 

  • Diskin M H 1961 The end depth at a drop in trapezoidal channels.J. Hydraul. Div., Am. Soc. Civ. Eng. 87: 11–32

    Google Scholar 

  • Fathy A, Shaarawi M A 1954 Hydraulics of free overfall.Proc. ASCE 80, Reston, pp. 1–12

  • Ferro V 1992 Flow measurement with rectangular free overfall.J. Irrig. Drain. Eng., Am. Soc. Civ. Eng. 118:956–970

    Google Scholar 

  • Ferro V 1999 Theoretical end-depth-discharge relationship for free overfall.J. Irrig. Drain. Eng., Am. Soc. Civ. Eng. 125: 40–44

    Article  Google Scholar 

  • Gupta R D, Jamil M, Mohsin M 1993 Discharge prediction in smooth trapezoidal free overfall (positive, zero and negative slopes).J. Irrig. Drain. Eng., Am. Soc. Civ. Eng. 119: 215–224

    Article  Google Scholar 

  • Hager W H 1983 Hydraulics of the plane overfall.J. Hydraul. Eng., Am. Soc. Civ. Eng. 109:1683–1697

    Article  Google Scholar 

  • Hager W H 1999 Cavity outflow from a nearly horizontal pipe.Int. J. Multiphase flow 25: 349–364

    Article  MATH  MathSciNet  Google Scholar 

  • ISO 3874 1977 End depth method for estimation of flow in rectangular channels with a free overfall. International Organization for Standardization, Geneva

  • ISO 4371 1984 End depth method for estimation of flow in non-rectangular channels with a free overfall. International Organization for Standardization, Geneva

  • Jaeger C 1948 Hauteur d’eau a l’extremite d’un long deversoir.La Houille Blanche 3: 518–523

    Google Scholar 

  • Jaeger C 1957Engineering fluid mechanics (New York: St. Martin’s Press)

    Google Scholar 

  • Keller R J, Fong S S 1989 Flow measurements with trapezoidal free overfall.J. Irrig. Drain. Eng., Am. Soc. Civ. Eng. 115: 125–136

    Google Scholar 

  • Kraijenhoff D A, Dommerholt A 1977 Brink depth method in rectangular channel.J. Irrig. Drain. Div, Am. Soc. Civ. Eng. 103: 171–177

    Google Scholar 

  • Marchi E 1993 On the free overfall.J. Hydraul. Res. 31: 777–790

    Article  Google Scholar 

  • Markland E 1965 Calculation of flow at a free overfall by relaxation method.Proc. Inst. Civ. Eng. (London) 31: 71–78

    Google Scholar 

  • Matthew G H 1991 Higher order, one dimensional equation of potential flow in open channels.Proc. Inst. Civ. Eng. (London) 90: 187–210

    Google Scholar 

  • Montes J S 1992 A potential flow solution for the free overfall.Water, Maritime and Energy, Proc. Inst. Civ. Eng. (London) 96: 259–266

    Article  Google Scholar 

  • Murty Bhallamudi S1994 End depth in trapezoidal and exponential channels.J. Hydraul. Res. 32: 219–232

    Article  Google Scholar 

  • Naghdi P M, Rubin M B 1981 On inviscid flow in a waterfall.J. Fluid Mech. 103: 375–387

    Article  MATH  MathSciNet  Google Scholar 

  • Rajaratnam N, Muralidhar D 1964a End depth for exponential channels.J. Irrig. Drain. Div., Am. Soc. Civ. Eng. 90: 17–36

    Google Scholar 

  • Rajaratnam N, Muralidhar D 1964b End depth for circular channels.J. Hydraul. Div, Am. Soc. Civ. Eng. 90:99–119

    Google Scholar 

  • Rajaratnam N, Muralidhar D 1968a Characteristics of rectangular free overfall.J. Hydraul. Res. 6: 233–258

    Article  Google Scholar 

  • Rajaratnam N, Muralidhar D 1968b The rectangular free overfall.J. Hydraul. Div, Am. Soc. Civ. Eng. 94: 849–850

    Google Scholar 

  • Rajaratnam N, Muralidhar D 1970 The trapezoidal free overfall.J. Hydraul. Res. 8: 419–447

    Article  Google Scholar 

  • Rajaratnam N, Muralidhar D, Beltaos S 1976 Roughness effects on rectangular overfall.J. Hydraul. Div, Am. Soc. Civ. Eng. 102: 599–614

    Google Scholar 

  • Rouse H 1936 Discharge characteristics of the free overfall.Civ. Eng. 6: 257–260

    Google Scholar 

  • Smith C D 1962 Brink depth for a circular channel.J. Hydraul. Div., Am. Soc. Civ. Eng. 88: 125–134

    Google Scholar 

  • Strelkoff T, Moayeri M S 1970 Pattern of potential flow in a free overfall.J. Hydraul. Div., Am. Soc. Civ. Eng. 96: 879–901

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey, S., Kumar, B.R. Hydraulics of free overfall in Δ-shaped channels. Sadhana 27, 353–363 (2002). https://doi.org/10.1007/BF02703656

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703656

Keywords

Navigation