Skip to main content
Log in

Acetylcholinesterase in central vocal control nuclei of the zebra finch (Taeniopygia guttata)

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The distribution of acetylcholinesterase (AChE) in the central vocal control nuclei of the zebra finch was studied using enzyme histochemistry. AChE fibres and cells are intensely labelled in the forebrain nucleus area X, strongly labelled in high vocal centre (HVC) perikarya, and moderately to lightly labelled in the somata and neuropil of vocal control nuclei robust nucleus of arcopallium (RA), medial magnocellular nucleus of the anterior nidopallium (MMAN) and lateral magnocellular nucleus of the anterior nidopallium (LMAN). The identified sites of cholinergic and/or cholinoceptive neurons are similar to the cholinergic presence in vocal control regions of other songbirds such as the song sparrow, starling and another genus of the zebra finch (Poephila guttata), and to a certain extent in parallel vocal control regions in vocalizing birds such as the budgerigar. AChE presence in the vocal control system suggests innervation by either afferent projecting cholinergic systems and/or local circuit cholinergic neurons. Co-occurrence with choline acetyltransferase (ChAT) indicates efferent cholinergic projections. The cholinergic presence in parts of the zebra finch vocal control system, such as the area X, that is also intricately wired with parts of the basal ganglia, the descending fibre tracts and brain stem nuclei could underlie this circuitry’s involvement in sensory processing and motor control of song.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aamodt S M, Koslowski M R, Nordeen E J and Nordeen K W 1992 Distribution and developmental change in [3H]MK-801 binding within zebra finch song nuclei;J. Neurobiol. 23 997–1005

    Article  CAS  Google Scholar 

  • Ball G F, Nock B, Wingfield J C, McEwen B S and Balthazart J 1990 Muscarinic cholinergic receptors in the songbird and quail brain: a quantitative autoradiographic study;J. Comp. Neurol. 298 431–442

    Article  CAS  Google Scholar 

  • Ball G F and Balthazart J 1990 Steroid modulation of muscarinic and α2-adrenergic receptor density in the nucleus Intercollicularis of the japanese quail;Eur. J. Neurosci. 2 828–835

    Article  Google Scholar 

  • Balthazart J, Absil P, Foidart A, Houbart M, Harada N and Ball G F 1996 Distribution of aromatase-immunoreactive cells in the forebrain of zebra finches(Taeniopygia guttata): implications for the neural action of steroids and nuclear definition in the avian hypothalamus;J. Neurobiol. 31 129–148

    Article  CAS  Google Scholar 

  • Bear M F and Singer W 1986 Modulation of visual cortical plasticity by acetylcholine and noradrenaline;Nature (London) 320 172–176

    Article  CAS  Google Scholar 

  • Bernard D J, Casto J M and Ball G F 1993 Sexual dimorphism in the volume of song control nuclei in european starlings: assessment by a Nissl stain and autoradiography for muscarinic cholinergic receptors;J. Comp. Neurol. 334 559–570

    Article  CAS  Google Scholar 

  • Bischof H-J and Herrmann K 1986 Arousal enhances [14C]2-deoxyglucose uptake in four forebrain areas of the zebra finch;Behav. Brain Res. 21 215–221

    Article  CAS  Google Scholar 

  • Bischof H-J 1997 Song learning, filial imprinting and sexual imprinting: three variations of a common theme?;Biomed. Res. (Suppl. 1) 18 133–146

    Google Scholar 

  • Bleisch W V, Luine V N and Nottebobm F 1984 Modification of synapses in androgen-sensitive muscle: hormonal regulation of acetylcholine receptor number in the songbird syrinx;J. Neurosci. 4 786–792

    Article  CAS  Google Scholar 

  • Bolhuis J J, Hetebrij E, den Boer-Visser A M, de Groot J H and Zijlstra G O 2001 Localized immediate early gene expression related to the strength of song learning in socially reared zebra finches;Eur. J. Neurosci. 13 2165–2170

    Article  CAS  Google Scholar 

  • Bottjer S W 1987 Ontogenetic changes in the pattern of androgen accumulation in song-control nuclei of male zebra finches;J. Neurobiol. 18 125–139

    Article  CAS  Google Scholar 

  • Bottjer S W 1993 The distribution of tyrosine hydroxylase immunoreactivity in the brain of male and female zebra finches;J. Neurobiol. 24 51–69

    Article  CAS  Google Scholar 

  • Bottjer S W, Halsema K A, Brown S A and Miesner E A 1989 Axonal connections of a forebrain nucleus involved with vocal learning in zebra finches;J. Comp. Neurol. 279 312–326

    Article  CAS  Google Scholar 

  • Bottjer S W, Brady J D and Cribbs B 2000 Connections of a motor cortical region in zebra finches: relation to pathways for vocal learning;J. Comp. Neurol. 420 244–260

    Article  CAS  Google Scholar 

  • Bradley P and Horn G 1981 Imprinting: a study of cholinergic receptor sites in parts of the chick brain;Exp. Brain Res. 41 121–123

    Article  CAS  Google Scholar 

  • Brainard M S and Doupe A J 2002 What songbirds teach us about learning;Nature (London) 417 341–358

    Article  Google Scholar 

  • Braun K, Scheich H, Schachner M and Heizmann A. W 1985 Distribution of parvalbumin, cytochrome oxidase activity and [14C]-2-deoxyglucose uptake in the brain of the zebra finch. I. Auditory and vocal motor systems;Cell Tiss. Res. 240 101–115

    Article  CAS  Google Scholar 

  • Brauth S E, Kitt A. A, Price D L and Wainer B H 1985 Cholinergic neurons in the telencephalon of the reptileCaiman crocodiles;Neurosci. Lett. 58 235–240

    Article  CAS  Google Scholar 

  • Casto J M and Ball G F 1993 Characterization and localization of D1 dopamine receptors in the sexually dimorphic vocal control nucleus, Area X and the basal ganglia of european starlings;J. Neurobiol. 25 767–780

    Article  Google Scholar 

  • Chubb I W, Hodgson A J and White G H 1980 Acetylcholinesterase hydrolyses substance P;Neurosciences 5 2065–2072

    Article  CAS  Google Scholar 

  • Chubb I W, Ranieri E, Hodgson A J and White G H 1982 The hydrolysis of Leu- and Met-enkephalin by acetylcholinesterase;Neurosci. Lett. Suppl. 8 S39

    Google Scholar 

  • Cookson K K, Hall W S, Heaton J T and Brauth S E 1996 Distribution of choline acetyltransferase and acetylcholinesterase in vocal control nuclei of the budgerigar(Melopsittacus undulatus);J. Comp. Neurol. 369 220–235

    Article  CAS  Google Scholar 

  • Davies D C and Horn G 1983 Putative cholinergic afferents of the chick hyperstriatum ventrale: a combined acetylcholinesterase and retrograde fluorescence labelling study;Neurosci. Lett. 38 103–107

    Article  CAS  Google Scholar 

  • Davies D C, Csillag A, Székely A D and Kabai P 1997 Efferent connections of the domestic chick archistriatum: a phaseolus lectin anterograde tracing study;J. Comp. Neurol. 389 679–693

    Article  CAS  Google Scholar 

  • den Boer-Visser A M, Brittijn M L and Dubbeldam J L 2004A stereotaxic atlas of the brain of the collard dove, Streptopelia decaocta: using the old and new nomenclature (Maartenslaan: Shaker)

    Google Scholar 

  • DeVoogd T J 1994 The neural basis for the acquisition and production of bird song; inCausal mechanisms of behavioural development (eds) J A Hogan and J J Bolhuis (Cambridge: University Press) pp 49–81

  • Dietl M M and Palacios J M 1988 Neurotransmitter receptors in the avian brain. I Dopamine receptors;Brain Res. 439 354–359

    Article  CAS  Google Scholar 

  • Dietl M M, Cortes R and Palacios J M 1988 Neurotransmitter receptors in the avian brain. II Muscarinic cholinergic receptors;Brain Res. 439 360–365

    Article  CAS  Google Scholar 

  • Dubbeldam J L, Den Boer-Visser A M and Bout R G 1997 Organization and efferent connections of the archistriatum of the mallard,Anas platyrhynchos L.; an anterograde and retrograde tracing study;J. Comp. Neurol. 338 632–657

    Article  Google Scholar 

  • Farries M A and Perkel D J 2002 A telencephalic nucleus essential for song learning contains neurons with physiological characteristics of both striatum and globus pallidus;J. Neurosci. 22 3776–3787

    Article  CAS  Google Scholar 

  • Gahr M, Guettinger H-R and Kroodsma D E 1993 Estrogen receptors in the avian brain: survey reveals general distribution and forebrain areas unique to songbirds;J. Comp Neurol. 327 112–122

    Article  CAS  Google Scholar 

  • Gurney M and Konishi M 1980 Hormone induced sexual differentiation of brain and behaviour in zebra finches;Science 208 1380–1383

    Article  CAS  Google Scholar 

  • Haywood J, Hambley J and Rose S 1975 Effects of exposure to an imprinting stimulus on the activity of enzymes involved in acetylcholine metabolism in chick brain;Brain Res. 92 219–225

    Article  CAS  Google Scholar 

  • Hedreen J C, Bacon S J and Price D L 1985 A modified histochemical technique to visualize acetylcholinesterase containing axons;J. Histochem. Cytochem. 33 134–140

    Article  CAS  Google Scholar 

  • Herrmann K and Arnold A P 1991 Lesions of HVc block the developmental masculinizing effects of estradiol in the female zebra finch song system;J. Neurobiol. 22 29–39

    Article  CAS  Google Scholar 

  • Immelmann K, Pröve R, Lassek R and Bischof H-J 1991 Influence of adult courtship experience on the development of sexual preferences in zebra finch males;Anim. Behav. 42 83–89

    Article  Google Scholar 

  • Johnson F, Salan M M and Bottjer S W 1995 Topographic organization of a forebrain pathway involved with vocal learning in zebra finches;J. Comp. Neurol. 358 260–278

    Article  CAS  Google Scholar 

  • Karten H J and Hodos W 1967A stereotaxic atlas of the brain of the pigeon (Columba livia) (Baltimore, Maryland: John Hopkins)

    Google Scholar 

  • Kawaguchi Y 1993 Physiological, morphological and histochemical characterisation of three classes of interneurons in rat neostriatum;J. Neurosci. 13 4908–4923

    Article  CAS  Google Scholar 

  • Konishi M and Akutagawa E 1985 Neuronal growth, atrophy and death in a sexually dimorphic song nucleus in the zebra finch brain;Nature (London) 315 145–147

    Article  CAS  Google Scholar 

  • Korte S and Bischof H-J 1997 Afferent connections of an arousal-area in the forebrain of the zebra finch(Taeniopygia guttata castanotis GOULD): the archi-neostriatum caudale (ANC); inBrain and evolution: Proceedings of the 24th Göttingen neurobiology conference (eds) N Elsner and H U Schnitzler (Stuttgart: Thieme) vol. 2, p 657

    Google Scholar 

  • Kusunoki T 1969 The chemoarchitectonics of the avian brain;J. Hirnforsch. 11 477–497

    PubMed  Google Scholar 

  • Lewis J W, Ryan S M, Arnold A P and Butcher L L 1981 Evidence for a catecholaminergic projection to area X in the zebra finch;J. Comp Neurol. 196 347–354

    Article  CAS  Google Scholar 

  • Luine V N, Nottebohm F, Harding C and McEwen B S 1980 Androgen affects cholinergic enzymes in syringeal motor neurons and muscle;Brain Res. 192 89–107

    Article  CAS  Google Scholar 

  • Luo M and Perkel D J 1999 Long-range GABAergic projections in a circuit essential for vocal learning;J. Comp. Neurol. 403 68–84

    Article  CAS  Google Scholar 

  • MacDougall-Shackleton S A and Ball G F 1999 Comparative studies of sex differences in the song-control system of songbirds;TINS 22 432–436

    CAS  PubMed  Google Scholar 

  • Medina L and Reiner A 1994 Distribution of choline acetyltransferase immunoreactivity in the pigeon brain;J. Comp. Neurol. 342 497–537

    Article  CAS  Google Scholar 

  • Mesulam M-M 1987 Cholinergic neurons, pathways, diseases; inEncylcopedia of neuroscience (ed.) G Adelman (Boston: Birkhaeuser) vol. 1, pp 233–235

    Google Scholar 

  • Nottebohm F 1981 A brain for all seasons: cyclical anatomical changes in song control nuclei of the canary brain;Science 214 1368–1370

    Article  CAS  Google Scholar 

  • Nottebohm F, Kelley D B and Paton J A 1982 Connections of vocal control nuclei in the canary telencephalon;J. Comp. Neurol. 207 344–357

    Article  CAS  Google Scholar 

  • Parent O and Olivier A 1970 Comparative histochemical study of the corpus striatum;J. Hirnforsch. 12 73–81

    CAS  PubMed  Google Scholar 

  • Pohl-Apel G and Sossinka R 1984 Hormonal determination of song capacity in females of the zebra finch: critical phase of treatment;Z. Tierpsychol. 64 330–336

    Article  Google Scholar 

  • Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S and Rubenstein J E R 2000 Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6 and Tbr-1;J. Comp. Neurol. 424 409–438

    Article  CAS  Google Scholar 

  • Reiner A, Laverghetta A V, Meade A. A, Cuthbertson S L and Bottjer S W 2004 An immunohistochemical and pathway tracing study of the striatopallidal organisation of area X in the male zebra finch;J. Comp. Neurol. 249 239–261

    Article  Google Scholar 

  • Reiner A, Perkel D J, Bruce L, Butler A, Csillag A, Kuenzel M, Medina L, Paxinos G, Shimizu T, Striedter G F, Wild M, Ball G F, Durand S, Güntürkün O, Lee D W, Mello A. V, Powers A, White S A, Hough G, Kubikova L, Smulders T V, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C and Jarvis E D 2004 Revised nomenclature for avian telencephalic and some related brainstem nuclei;J. Comp. Neurol. 473 377–414

    Article  Google Scholar 

  • Rose S P R, Gibbs M E and Hambley J 1980 Transient increase in forebrain muscarinic acetylcholine receptors following passive avoidance learning;Neurosciences 5 169–172

    Article  CAS  Google Scholar 

  • Ryan S M and Arnold A P 1981 Evidence for cholinergic participation in the control of bird song: acetylcholinesterase distribution and muscarinic receptor autoradiography in the zebra finch brain;J. Comp. Neurol. 202 211–219

    Article  CAS  Google Scholar 

  • Sadananda M and Bischof H-J 2002 Enhanced fos expression in the zebra finch(Taeniopygia guttata) brain following first courtship;J. Comp. Neurol. 448 150–164

    Article  CAS  Google Scholar 

  • Sadananda M and Bischof H-J 2003 Archistriatal afferents to the lateral neostriatum: the amygdalar influence on mate choice in birds; inNetworks and behaviour: proceedings of the NCBS Neurobiology Symposium, 4–6 January 2003, Bangalore, p. (317

  • Sakaguchi H and Saito N 1989 The acetylcholine and catecholamine contents in song control nuclei of zebra finch during song ontogeny;Dev. Brain Res. 47 313–317

    Article  CAS  Google Scholar 

  • Shimizu T and Karten H J 1993 The avian visual system and the evolution of the neocortex; inVision, brain and behaviour in birds (eds) H P Zeigler, H-J Bischof (Cambridge: MIT) pp 103–114

    Google Scholar 

  • Sorenson E M and Chiappinelli V A 1992 Localisation of3H-Nicotine,125I-kappa-bungaratoxin and126I-alpha bungaratoxin binding to nicotinic sites in the chicken forebrain and midbrain;J. Comp. Neurol. 323 1–12

    Article  CAS  Google Scholar 

  • Stokes T M, Leonard A. M and Nottebohm F 1972 The telencephalon, diencephalon and mesencephalon of the canary,Serinus canaria, in stereotaxic coordinates;J. Comp. Neurol. 136 337–374

    Google Scholar 

  • Stone D J, Rozovsky I, Morgan T E, Anderson A. P and Finch A. E 1998 Increased synaptic sprouting in response to estrogen via an apolipoprotein E-dependent mechanism: implications for Alzheimer’s disease;J. Neurosci. 18 3180–3185

    Article  CAS  Google Scholar 

  • Striedter G F 1994 The vocal control pathways in budgerigars differ from those in songbirds;J. Comp. Neurol. 343 35–56

    Article  CAS  Google Scholar 

  • Striedter G F, Marchant T A and Beydler S 1998 The “neostriatum” develops as part of the lateral pallium in birds;J. Neurosci. 18 5839–5849

    Article  CAS  Google Scholar 

  • Tramontin A D and Brenowitz E A 2000 Seasonal plasticity in the adult brain;TINS 23 251–258

    CAS  PubMed  Google Scholar 

  • Vincent S R 1992 Histochemistry of endogenous enzymes; inExperimental neuroanatomy: a practical approach (ed.) J P Bolam (Oxford: IRL Press) pp 153–171

    Google Scholar 

  • Voorhuis T A M and deKloet E R 1992 Immunoreactive vasotocin in the zebra finch brain(Taeniopygia guttata);Dev. Brain Res. 69 1–10

    Article  CAS  Google Scholar 

  • Wächtler K 1985 Regional distribution of muscarinic acetylcholine receptors in the telencephalon of the pigeon(Columba liviaf. domestica);J. Hirnforsch. 26 85–90

    PubMed  Google Scholar 

  • Wächtler K and Ebinger P 1989 The pattern of muscarinic acetylcholine receptor binding in the avian brain;J. Hirnforsch. 30 409–414

    PubMed  Google Scholar 

  • Wallhäusser-Franke E, Collins A. E and DeVoogd T J 1995 Developmental changes in the distribution of NADPH-diaphorase-containing neurons in telencephalic nuclei of the zebra finch song system;J. Comp. Neurol. 356 345–354

    Article  Google Scholar 

  • Watson J T, Adkins-Regan E, Whiting P, Lindstrom J M and Podleski T R 1988 Autoradiographic localization of nicotinic acetylcholine receptors in the brain of the zebra finch(Poephila guttata);J. Comp. Neurol. 274 255–264

    Article  CAS  Google Scholar 

  • Zeier H and Karten H J 1971 The archistriatum of the pigeon: organisation of afferent and efferent connections;Brain Res. 31 313–326

    Article  CAS  Google Scholar 

  • Zuschratter W and Scheich H 1990 Distribution of choline acetyltransferase and acetylcholinesterase in the vocal motor system of zebra finches;Brain Res. 513 193–201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadananda, M. Acetylcholinesterase in central vocal control nuclei of the zebra finch (Taeniopygia guttata). J. Biosci. 29, 189–200 (2004). https://doi.org/10.1007/BF02703417

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703417

Keywords

Navigation