Skip to main content
Log in

Sensory projections of identified coxal hair sensilla of the scorpionHeterometrus fulvipes (Scorpionidae)

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The topography of long hair sensilla on the coxae of walking legs and pedipalps of the scorpionHeterometrus fulvipes is described. Identified long hair sensilla are cobalt filled, and central projections of sensory fibres are reported for the first time in the suboesophageal ganglion of this scorpion. The afferent fibres arising from each long hair sensilla segregate into ventral, dorsomedial and dorsal tracts upon their entry into the suboesophageal ganglion. These transverse tracts bifurcate towards the middle of the leg neuromere and form three ipsilateral, plurisegrnental, longitudinal sensory pathways. Filling a pair of bilaterally distributed long hair sensilla shows bilaterally arranged longitudinal afferent tracts interconnected by distinct transverse commissures. Similar patterns of sensory projections are observed when filling homologous hairs on other legs and pedipalps. Numerous fine collaterals arise from the longitudinal sensory trancts that subdivide and end in small blebs presumed to be presynaptic endings. The dorsal and dorsomedial longitudinal tracts and their respective commissures are in close association with the dendritic arborisations of pedipalpal and leg motor neurons, suggesting direct contact between them. The probable functions of these multisegmental hair afferent pathways are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

LHS:

Long hair sensillum

SOG:

suboesophageal ganglion

VTT:

ventral transverse tract

DMT:

dorsal median tract

DT:

dorsal tract

VLST:

vental longitudinal sensory tract

AVT:

anterior ventral transverse tract

CVT:

central ventral transverse tract

PVT:

posterior ventral transverse tract

VDC:

ventrodorsal connective

DMLST:

dorsomedial longitudinal sensory tract

ADC:

anterior dorsal commissures

M DC:

medial dorsal commissure

DLST:

dorsal longitudinal sensory tract

PDT:

posterior dorsal transverse tract

AVC:

anterior ventral commissure

CVC:

central ventral commissure

PVC:

posterior ventral commissure

ADT:

anterior dorsal transverse tract

PDC:

posterior dorsal commissure

PDN:

pedipalpal nerve

VNC:

ventral nerve cord

References

  • Alexandrowicz J S 1951 Muscle receptor organs in the abdomen ofHomarus vulgaris andPalinurus vulgaris;Q. J. Microsc. Sci. 92 163–199

    Google Scholar 

  • Altman J S and Kien J 1979 Suboesophageal neurons involved in head movements and feeding in locusts;Proc. R. Soc. (London) B205 209–227

    Google Scholar 

  • Altman J S and Tyrer N M 1974 Insect flight as a system for the study of the development of neural connections; inThe experimental analysis of insect behavior (ed.) L BartonBrowne (Berlin, Heidelberg, New York: Springer) pp 159–179

    Google Scholar 

  • Anton S and Barth F G 1991 Organization of mechanoreceptive afferences in the CNS of a wandering spider; inProceedings of 19th Gottingen Neurobiology Conference, Synapse-Transmission Modulation (eds) N Eisner and H Penzlin (New York: George Thieme Verlag Stuttgart) p 42

    Google Scholar 

  • Babu K S 1965 Anatomy of the central nervous system of arachnids;Zool. Jahrb. Abt. Anat. Ontog. Tiere 82 1–154

    Google Scholar 

  • Babu K S and Barth F G 1989 Central nervous projections of mechanoreceptors in the spider,Cupiennius salei keys;Cell Tissue Res. 258 69–82

    Article  Google Scholar 

  • Babu K S, Jacob Doss P, Ravinder Rao B and Sekhar V 1993 Central projections of primary fibres from a single hair sensillum in the scorpion,Heterometrus fulvipes;Indian J. Exp. Biol. 31 231–234

    Google Scholar 

  • Babu K S and Sanjeeva Reddy P 1967 Unit hair receptor activity from the telson of the scorpion,Heterometrusfulvipes;Curr. Sci. 36 599–600

    Google Scholar 

  • Bacon J P and Altman J S 1977 A silver intensification method for cobalt filled neurons in wholemount preparations;Brain Res. 138 359–363

    Article  PubMed  CAS  Google Scholar 

  • Bowerman R F and Burrows M 1980 The morphology and physiology of some walking leg motor neurons in a scorpion;J. Comp. Physiol. A140 31–42

    Article  Google Scholar 

  • Bräunig P and Hustert R 1980 Proprioreceptors with central cell bodies in insects;Nature (London) 283 768–770

    Article  Google Scholar 

  • Bräunig P, Hustert R and Pfluger H J 1981 Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts: 1. Morphology, location and innervation of internal proprioreceptors of pro- and meta thorax and their central projections;Cell Tissue Res. 216 57–78

    Article  PubMed  Google Scholar 

  • Brownell P and Farley R D 1979a Detection of vibrations in sand by the tarsal sense organs of the nocturnal scorpion,Parucoctonus mesaensis;J. Comp. Physiol. A131 23–30

    Article  Google Scholar 

  • Brownell P and Farley R D 1979b Orientation to vibrations in sand by the nocturnal scorpion,Paruroctonus mesaensis: Mechanism of target localization;J. Comp. Physiol. A131 31–38

    Article  Google Scholar 

  • Bullock T H and Horridge G A 1965Structure and function of the nervous systems of invertebrates (Sanfrancisco: W H Freeman)

    Google Scholar 

  • Eckweiler W and Seyfarth E A 1988 Tactile hairs and the adjustment of body height in wandering spiders: behaviour, leg reflexes and afferent projections in the leg ganglia;J. Comp. Physiol A162 611–621

    Article  Google Scholar 

  • Eckweiler W, Hammer K and Seyfarth E A 1989 Long, smooth hair sensilla on the spider leg coxa: sensory physiology, central projection pattern, and proprioreceptive function (Arachnida: Araneida);Zoomorphology 109 97–102

    Article  Google Scholar 

  • Fields H L and Kennedy D 1965 Functional role of muscle receptor organs in crayfish;Nature (London) 206 1232–1237

    Article  Google Scholar 

  • Foelix R F and Schabronath J 1983 The fine structure of scorpion sensory organs I. Tarsal sensil;Bull. Br. Arachnol. Soc. 6 53–67

    Google Scholar 

  • Gewecke M 1979 Central projection of antennal afferents for the flight motor neurons inLocusta migratoria (Orthoptera: Acrididae);Entomol. Generalis. 5 317–320

    Google Scholar 

  • Hanström B 1921 Uber die histologie und vergleichende anatomie der sehganglien und globuli der araneen;K. Sven. Vetenskapsakad. Handl. 61 1–39

    Google Scholar 

  • Hanström B 1928Vergleichende Anatomie des nerven systems der wirbellosen tiere (Berlin: Springer)

    Google Scholar 

  • Hustert R 1978 Segmental and interganglionic projections from primary fibres of insect mechanoreceptors;Cell Tissue Res. 194 337–351

    Article  PubMed  CAS  Google Scholar 

  • Hustert R, Pflüger H J and Bräunig P 1981 Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts. III The external mechanoreceptors: the companiform sensilla;Cell Tissue Res. 219 97–112

    Google Scholar 

  • Jacob Doss P 1990Cuticular receptors in the scorpion, Heterometrus fulvipes: Distribution, structure and postnatal development, M. Phil dissertation, S. V. Univ., Tirupati

    Google Scholar 

  • Kasaiah A 1989Neuroethology of the scorpion, Heterometrus fulvipes: Habitat, cuticular receptors and behaviour, Doctoral dissertation, S. V. Univ., Tirupati

    Google Scholar 

  • Kasaiah A, Sekhar V, Rajarami Reddy G and Sasira Babu K 1989 Distribution and innervation of cuticular sense organs in the scorpion,Heterometrus fulvipes; inNeurobiology of sensory systems (eds) RN Singh and N J Strausfeld (London: Plenum) pp 581–591

    Google Scholar 

  • Levine R B, Pak C and Linn D 1985 The structure, function and metamorphic reorganization of somatically projecting sensory neurons inManduca sexta larvae;J. Comp. Physiol. A157 1–13

    Article  Google Scholar 

  • Moro S D and Geethabali 1985 Distribution of cuticular sensory hairs on the legs and whip ofThelyphonus indicus stoliczka (Arachnida: Uropygi);Monit. Zool. Ital. 19 207–218

    Google Scholar 

  • Moro S D and Geethabali 1986 The topography of slit sense organs in the whip scorpion,Thelyphonus indicus (Arachnida: Uropygida);Veh. Naturwiss. Ver. Hamburg. 28 91–105

    Google Scholar 

  • Murphey R K 1985 A second cricket cereal sensory system. Bristle hairs and the interneurons they activate;J. Comp. Physiol. A156 357–367

    Article  Google Scholar 

  • Padmanabha Naidu B 1967 A new perfusion fluid for the scorpion,Heterometrus fulvipes;Nature (London)213 410

    Article  Google Scholar 

  • Palka J and Babu K S 1967 Towards the physiological analysis of defensive responses of scorpions;Z. Vgl Physiol. 55 286–298

    Google Scholar 

  • Pflüger H J 1980 The function of hair sensilla on the locust leg, the role of tibial hairs;J. Exp. Biol. 87 163–175

    Google Scholar 

  • Pflüger H J, Bräunig P and Hustert R 1988 The organization of mechanosensory neuropiles in locust thoracic ganglia;Philos. Trans. R. Soc. (London) B321 1–26

    Article  Google Scholar 

  • Sanjeeva Reddy P 1969Studies on the input from a hair sensillum into the central nervous system of the scorpion, Heterometrus fulvipes, Doctoral dissertation, S. V. Univ., Tirupati

    Google Scholar 

  • Sanjeeva Reddy P 1971 Function of the supernumerary sense cells and the relationship between modality of adequate stimulus and innervation pattern of the scorpion hair sensillum;J. Exp. Biol. 54 233–238

    Google Scholar 

  • Seyfarth F A, Gnatzy W and Hammer K 1990 Coxal hair plates in spiders: Physiology, fine structure and specific central projections;J. Comp. Physiol. A166 633–642

    Google Scholar 

  • Tyrer N M and Altman J S 1974 Insect flight as a system for the study of the development of neuronal connections; inExperimental analysis of insect behaviour (ed.) L Barton Browne (New York: Springer) pp 159–179

    Google Scholar 

  • Tyrer N M, Bacon J P and Davies C A 1979 Sensory projections from the wind sensitive hairs of the locustSchistocercagregaria. Distribution in the central nervous system;Cell Tissue Res. 203 79–92

    Article  PubMed  CAS  Google Scholar 

  • Venkateswara Rao P 1963Studies on the peripheral nervous system of the scorpion, Heterometrus fulvipes, Doctoral dissertation, S. V. Univ., Tirupati

    Google Scholar 

  • Wiersma C A G and Hughes G M 1961 On the functional anatomy of neuronal units in the abdominal card of the crayfish,Procambarus clarkii (Girara);J. Comp. Neurol. 116 209–228

    Article  PubMed  CAS  Google Scholar 

  • Yellamma K 1980Anatomy and physiology of the 7th abdominal ganglion of the scorpion, Heterometrus fulvipes (C.Koch) and their relation to neuromuscular innervation of the stinger, Doctoral dissertation, S. V. Univ., Thirupati

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babu, K.S., Sreenivasulu, K. & Sekhar, V. Sensory projections of identified coxal hair sensilla of the scorpionHeterometrus fulvipes (Scorpionidae). J Biosci 18, 247–259 (1993). https://doi.org/10.1007/BF02703122

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703122

Keywords

Navigation