Skip to main content
Log in

Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log — ratio transformation of major-element data

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

We present five new discriminant function diagrams based on an extensive database representative of basic and ultrabasic rocks from four tectonic settings of island arc, continental rift, ocean-island, and mid-ocean ridge. These diagrams were obtained after loge-transformation of concentration ratios of major-elements — a technique recommended for a correct statistical treatment of compositional data. Higher % success rates (overall values from ∼ 83 to 97%) were obtained for proposing these new diagrams as compared to those (∼82 to 94%) obtained from the discriminant analysis of the raw major-element concentration data (i.e., without the loge-transformation and without taking ratios of the compositional data, but using exactly the same database to provide an unbiased comparison), suggesting that such a data transformation constitutes a statistically correct and recommended technique. The new diagrams also resulted in less mis-classification of basic and ultrabasic rocks from known tectonic settings than the diagrams obtained from the raw data. The use of these highly successful new discriminant function diagrams is illustrated using Miocene to Recent basic and ultrabasic rocks from three areas of Mexico with complex or controversial tectonic settings (Mexican Volcanic Belt, Los Tuxtlas volcanic field, and Eastern Alkaline Province), as well as older rocks from three areas (Deccan, Malani, and Bastar) of India. Additionally, the major-element data from two ‘known’ continental arc settings are used to show that they are similar to those from the island arc setting. Continental rift setting is inferred for all Mexican cases and for one cratonic area of India (Malani) and an IAB setting for the Bastar craton. The Deccan flood basalt province of India is used to warn against an indiscriminate use of those discrimination diagrams that do not explicitly include the likely setting of the area under evaluation. An Excel template is also provided for an easy application of these new diagrams for discriminating the four settings considered in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal S 1999 Geochemical discrimination diagrams: a simple way of replacing eye-fitted boundaries with probability based classifier surfaces;J. Geol. Soc. India 54 335–346.

    Google Scholar 

  • Agrawal S, Guevara M and Verma S P 2004 Discriminant analysis applied to establish major-element field boundaries for tectonic varieties of basic rocks;Int. Geol. Rev. 46 575–594.

    Google Scholar 

  • Aitchison J 1986The statistical analysis of compositional data; (London: Chapman and Hall) 416 p.

    Google Scholar 

  • Alam M A, Chandrasekharam D, Vaselli O, Capaccioni B, Manetti P and Santo P B 2004 Petrology of the prehistoric lavas and dyke of the Barren island, Andaman Sea, Indian Ocean;Proc. Indian Acad. Sci. (Earth Planet. Sci.) 113 715–722.

    Google Scholar 

  • Aldanmaz E, Pearce J A, Thirlwall M F and Mitchell J G 2000 Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey;J. Volcanol. Geotherm. Res. 102 67–95.

    Article  Google Scholar 

  • Alici P, Temel A and Gourgaud A 2002 Pb-Nd-Sr isotope and trace element geochemistry of Quaternary extension-related alkaline volcanism: a case study of Kula region (western Anatolia, Turkey);J. Volcanol. Geotherm. Res. 115 487–510.

    Article  Google Scholar 

  • Aoki K-I, Yoshida T, Yusa K and Nakamura Y 1985 Petrology and geochemistry of the Nyamuragira volcano, Zaire;J. Volcanol. Geotherm. Res. 25 1–28.

    Article  Google Scholar 

  • Arculus R J 1976 Geology and geochemistry of the alkali basalt-andesite association of Grenada, Lesser Antilles island arc;Geol. Soc. Am. Bull. 87 612–624.

    Article  Google Scholar 

  • Armstrong-Altrin J S and Verma S P 2005 Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings;Sedim. Geol. 177 115–129.

    Article  Google Scholar 

  • Auchapt A, Dupuy C, Dostal J and Kanika M 1987 Geochemistry and petrogenesis of rift-related volcanic rocks from South Kivi (Zaire);J. Volcanol. Geotherm. Res. 31 33–46.

    Article  Google Scholar 

  • Bach W, Hegner E, Erzinger J and Satir M 1994 Chemical and isotopic variations along the superfast spreading East Pacific Rise from 6 to 30°S;Contrib. Mineral. Petrol. 116 365–380.

    Article  Google Scholar 

  • Bach W, Erzinger J, Dosso L, Bollinger C, Bougault H, Etoubleau J and Sauerwein J 1996 Unusually large Nb-Ta depletions in North Chile ridge basalts at 36° 50′ to 38° 56′S; major element, trace element, and isotopic data;Earth Planet. Sci. Lett. 142 223–240.

    Article  Google Scholar 

  • Barberi F, Ferrara G, Santacroce R, Treuil M and Varet J 1975 A transitional basalt-pantellerite sequence of fractional crystallization, the Boina centre (Afar rift, Ethiopia);J. Petrol. 16 22–56.

    Google Scholar 

  • Bardintzeff J M and Deniel C 1992 Magmatic evolution of Pacaya and Cerro Chiquito volcanological complex, Guatemala;Bull. Volcanol. 54 267–283.

    Article  Google Scholar 

  • Barrat J A, Joron J L, Taylor R N, Fourcade S, Nesbitt R W and Jahn B M 2003 Geochemistry of basalts from Manda Hararo, Ethiopia: LREE-depleted basalts in Central Afar;Lithos 69 1–13.

    Article  Google Scholar 

  • Barsdell M 1988 Petrology and petrogenesis of clinopyroxene-rich tholeiitic lavas, Merelava volcano, Vanuatu;J. Petrol. 29 927–964.

    Google Scholar 

  • Barsdell M and Berry R F 1990 Origin and evolution of primitive island arc ankaramites from western Epi, Vanuatu;J. Petrol. 31 747–777.

    Google Scholar 

  • Basu A R, Junwen W, Wankang H, Guanghong X and Tatsumoto M 1991 Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs;Earth Planet. Sci. Lett. 105 149–169.

    Article  Google Scholar 

  • Bau M and Knittel U 1993 Significance of slab-derived partial melts and aqueous fluids for the genesis of tholeiitic and calc-alkaline island-arc basalts: evidence from Mt. Arayat, Philippines;Chem. Geol. 105 233–251.

    Article  Google Scholar 

  • Bell K and Peterson T 1991 Nd and Sr isotopic systematics of Shombole volcano, East Africa, and the links between nephelinites, phonolites, and carbonatites;Geology 19 582–585.

    Article  Google Scholar 

  • Bergmanis E C, Sinton J M and Trusdell F A 2000 Rejuvenated volcanism along the southwest rift zone, East Maui, Hawaii;Bull. Volcanol. 62 239–255.

    Article  Google Scholar 

  • Bevington P R and Robinson D K 2003Data reduction and error analysis for the physical sciences (Third Edition); (Boston: McGraw Hill) 320 p.

    Google Scholar 

  • Bhushan S K and Chandrasekaran V 2002 Geology and geochemistry of the magmatic rocks of the Malani Igneous Suite and Tertiary Alkaline Province of western Rajasthan;Geol. Surv. India Memoir. 126 1–181.

    Google Scholar 

  • Bloomer S H, Stern R J, Fisk E and Geschwind C H 1989 Shoshonitic volcanism in the northern Mariana arc. 1. Mineralogic and major and trace element characteristics;J. Geophys. Res. 94 4469–4496.

    Google Scholar 

  • Bohrson W A and Reid M R 1995 Petrogenesis of alkaline basalts from Socorro Island, Mexico: Trace element evidence for contamination of ocean island basalt in the shallow ocean crust;J. Petrol. 100 24, 555–24,576.

    Google Scholar 

  • Bondre N R, Hart W K and Sheth H C 2006 Geology and geochemistry of the Sangamner mafic dike swarm, western Deccan volcanic province, India: implications for regional stratigraphy;J. Geol. 114 155–170.

    Article  Google Scholar 

  • Bougault H, Dmitriev L, Schilling J G, Sobolev A, Joron J L and Needham H D 1988 Mantle heterogeneity from trace elements: MAR triple junction near 14°N;Earth Planet. Sci. Lett. 88 27–36.

    Article  Google Scholar 

  • Brophy J G 1986 The Cold Bay volcanic center, Aleutian volcanic arc. I. Implications for the origin of hi-alumina arc basalt;Contrib. Mineral. Petrol. 93 368–380.

    Article  Google Scholar 

  • Brown G M, Holland J G, Sigurdsson H, Tomblin J F and Arculus R J 1977 Geochemistry of the Lesser Antilles volcanic island arc;Geochim. Cosmochim. Acta 41 785–801.

    Article  Google Scholar 

  • Bryan W B, Stice G D and Ewart A 1972 Geology, petrography, and geochemistry of the volcanic islands of Tonga;J. Geophys. Res. 77 1566–1585.

    Google Scholar 

  • Bryan W B, Thompson G and Ludden J N 1981 Compositional variation in normal MORB from 22°–25°N: mid-Atlantic ridge and Kane fracture zone;J. Geophys. Res. 86 11, 815–11,836.

    Google Scholar 

  • Butler J C 1979 Trends in ternary petrologic variation diagrams —fact or fantasy?;Am. Mineral. 64 1115–1121.

    Google Scholar 

  • Butler J C 1986 The role of spurious correlation in the development of a komatiite alteration model;J. Geophys. Res. 91 E275-E280.

    Google Scholar 

  • Butler J C and Woronow A 1986 Discrimination among tectonic settings using trace element abundances of basalts;J. Geophys. Res. 91 10, 289–10,300.

    Google Scholar 

  • Cambon P, Bougault H, Joron J L and Treuil M 1979 Basalts from the East Pacific Rise: an example of typical oceanic crust depleted in hygromagmaphile elements; In:Init. Repts. DSDP (eds) B T R Lewis and P Robinsonet al (Washington DC: US Government Printing Office) 623–633.

    Google Scholar 

  • Camp V E, Roobol M J and Hooper P R 1991 The Arabian continental alkali basalt province: part II. Evolution of Harrats Khaybar, Ithnayn, and Kura, Kingdom of Saudi Arabia;Geol. Soc. Am. Bull. 103 363–391.

    Article  Google Scholar 

  • Carr M J 1984 Symmetrical and segmented variation of physical and geochemical characteristics of the Central American volcanic front;J. Volcanol. Geotherm. Res. 20 231–252.

    Article  Google Scholar 

  • Carr M J, Feigenson M D and Bennett E A 1990 Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc;Contrib. Mineral. Petrol. 105 369–380.

    Article  Google Scholar 

  • Carracedo J C, Singer B, Jicha B, Guillou H, Rodríguez Badiola E, Meco J, Pérez Torrado F J, Gimeno D, Socorro S and Láinez A 2003 La erupción y el tubo volcánico del volcán Corona (Lanzarote, Islas Canarias);Estudios Geol. 59 277–302.

    Google Scholar 

  • Chauvel C and Jahn B-M 1984 Nd-Sr isotope and REE geochemistry of alkali basalts from the Massif Central, France;Geochim. Cosmochim. Acta 48 93–110.

    Article  Google Scholar 

  • Chauvel C, McDonough W, Guille G, Maury M and Duncan R 1997 Contrasting old and young volcanism in Rurutu Island, Austral chain;Chem. Geol. 139 125–143.

    Article  Google Scholar 

  • Chayes F 1960 On correlation between variables of constant sum;J. Geophys. Res. 65 4185–4193.

    Google Scholar 

  • Chayes F 1978Ratio correlation. A manual for students of petrology and geochemistry; (Chicago and London: University of Chicago Press) 99 p.

    Google Scholar 

  • Chayes F 1983 Detecting nonrandom associations between proportions by tests of remaining-space variables;Math. Geol. 15 197–206.

    Article  Google Scholar 

  • Chayes F and Velde D 1965 On distinguishing basaltic lavas of circumoceanic and oceanic-island type by means of discriminant functions;J. Amer. Sci. 263 206–222.

    Article  Google Scholar 

  • Chen C Y, Frey F A, Garcia M O, Dalrymple G B and Hart S R 1991 The tholeiite to alkalic basalt transition at Haleakala volcano, Maui, Hawaii;Contrib. Mineral. Petrol. 106 183–200.

    Article  Google Scholar 

  • Chen C-Y, Frey F A and Garcia M O 1990 Evolution of alkalic lavas at Heleakala volcano, east Maui, Hawaii;Contrib. Mineral. Petrol. 105 197–218.

    Article  Google Scholar 

  • Cheng Q C, Macdougall J D and Lugmair G W 1993 Geochemical studies of Tahiti, Teahitia and Mahetia, Society Island Chain;J. Volcanol. Geotherm. Res. 55 155–184.

    Article  Google Scholar 

  • Chung S L, Jahn B M, Chen S J, Lee T and Chen C-H 1995 Miocene basalts in northwestern Taiwan: Evidence for EM-type mantle sources in the continental lithosphere;Geochim. Cosmochim. Acta 59 549–555.

    Article  Google Scholar 

  • Chung S-L, Sun S S, Tu K, Chen-Hong C and Lee C L 1994 Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: product of lithosphere-asthenosphere interaction during continental extension;Chem. Geol. 112 1–20.

    Article  Google Scholar 

  • Class C, Altherr R, Volker F, Eberz G and McCulloch M T 1994 Geochemistry of Pliocene to Quaternary alkali basalts from the Huri Hills, Northern Kenya;Chem. Geol. 113 1–22.

    Article  Google Scholar 

  • Cullen A and McBirney A R 1987 The volcanic geology and petrology of Isla Pinta, Galapagos archipelago;Geol. Soc. Am. Bull. 98 294–301.

    Article  Google Scholar 

  • Davidson J P and Wilson I R 1989 Evolution of an alkali basalt-trachyte suite from Jebel Marra volcano, Sudan, through assimilation and fractional crystallization;Earth Planet. Sci. Lett. 95 141–160.

    Article  Google Scholar 

  • De Mulder M, Hertogen J, Deutsch S and André L 1986 The role of crustal contamination in the potassic suite of the Karisimbi volcano (Virunga, African Rift Valley);Chem. Geol. 57 117–136.

    Article  Google Scholar 

  • Defant M J, Jacques D, Maury R C, De Boer J and Joron J-L 1989 Geochemistry and tectonic setting of the Luzon arc, Philippines;Geol. Soc. Am. Bull. 101 663–672.

    Article  Google Scholar 

  • Defant M J, Maury R C, Ripley E M, Feigenson M D and Jacques D 1991 An example of island-arc petrogenesis: goechemistry and petrology of the southern Luzon arc, Philippines;J. Petrol. 32 455–500.

    Google Scholar 

  • Defant M J, Sherman S, Maury R C, Bellon H, de Boer J, Davidson J and Kepezhinskas P 2001 The geology, petrology, and petrogenesis of Saba Island, Lesser Antilles;J. Volcanol. Geotherm. Res. 107 87–111.

    Article  Google Scholar 

  • Demant A 1981L’axe néo-volcanique transmexicain,étude volcanologique et pétrographique, signification géodynamique. Ph.D. thesis, 259 p. and appendix. Université de Droit, d’Economie et des Sciences d’Aix-Marseille.

  • Deniel C, Vidal P, Coulon C, Vellutini P and Piguet P 1994 Temporal evolution of mantle sources during continental rifting: The volcanism of Djibouti (Afar);J. Geophys. Res. 99 2853–2869.

    Article  Google Scholar 

  • Deruelle B 1982 Petrology of the Plio-Quaternary volcanism of the south-central and meridional Andes;J. Volcanol. Geotherm. Res. 14 77–124.

    Article  Google Scholar 

  • Devine J D 1995 Petrogenesis of the basalt-andesite-dacite association of Grenada, Lesser Antilles island arc, revisited;J. Volcanol. Geotherm. Res. 69 1–33.

    Article  Google Scholar 

  • Dosso L, Bougault H, Beuzart P, Beuzart, J-Y C and Joron J-L 1988 The geochemical structure of the South-East Indian Ridge;Earth Planet. Sci. Lett. 88 47–59.

    Article  Google Scholar 

  • Dosso L, Bougault H and Joron J-L 1993 Geochemical morphology of the north Mid-Atlantic Ridge, 10°–24°N: trace element-isotope complementarity;Earth Planet. Sci. Lett. 120 443–462.

    Article  Google Scholar 

  • Doucet S, Weis D, Scoates J S, Debaille V and Giret A 2004 Geochemical and Hf-Pb-Sr-Nd isotopic constraints on the origin of the Amsterdam-St Paul (Indian Ocean) hotspot basalts;Earth Planet. Sci. Lett. 218 179–195.

    Article  Google Scholar 

  • Duncker K E, Wolff J A, Harmon R S, Leat P T, Dickin A P and Thompson R N 1991 Diverse mantle and crustal components in lavas of the NW Cerros del Rio volcanic field, Rio Grande Rift, New Mexico;Contrib. Mineral. Petrol. 108 331–345.

    Article  Google Scholar 

  • Dupuy C, Dostal J, Marcelot G, Bougault H, Joron J L and Treuil M 1982 Geochemistry of basalts from central and southern New Hebrides arc: implication for their source rock composition;Earth Planet. Sci. Lett. 60 207–225.

    Article  Google Scholar 

  • Dupuy C, Barsczus H G, Liotard J M and Dostal J 1988 Trace element evidence for the origin of ocean island basalts: an example from the Austral Islands (French Polynesia);Contrib. Mineral. Petrol. 98 293–302.

    Article  Google Scholar 

  • Dupuy C, Barsczus H G, Dostal J, Vidal P and Liotard J-M 1989 Subducted and recycled lithosphere as the mantle source of Ocean Island basalts from southern Polynesia, central Pacific;Chem. Geol. 77 1–18.

    Article  Google Scholar 

  • Duraiswami R A, Bondre N R and Dole G 2004 Possible lava tube system in a hummocky lava flow at Daund, western Deccan volcanic province, India;Proc. Indian Acad. Sci. (Earth Planet. Sci.) 113 819–829.

    Google Scholar 

  • Edwards C M H, Menzies M A, Thirlwall M F, Morris J D, Leeman W P and Harmon R S 1994 The transition to potassic alkaline volcanism in Island arcs: The Ringgit-Beser complex, East Java, Indonesia;J. Petrol. 35 1557–1595.

    Google Scholar 

  • Elliott T, Plank T, Zindler A, White W M and Bourdon B 1997 Element transport from slab to volcanic front at the Mariana arc;J. Geophys. Res. 102 14, 991–15,019.

    Google Scholar 

  • Engel A E J and Engel C G 1964 Igneous rocks of the East Pacific Rise;Science 146 477–485.

    Article  Google Scholar 

  • Ewart A, Brothers R N and Mateen A 1977 An outline of the geology and geochemistry, and the possible petrogenetic evolution of the volcanic rocks of the Tonga-Kermadec-New Zealand island arc;J. Volcanol. Geotherm. Res. 2 205–270.

    Article  Google Scholar 

  • Fan Q and Hooper P R 1991 The Cenozoic basaltic rocks of eastern China: petrology and chemical composition;J. Petrol. 32 765–810.

    Google Scholar 

  • Ferrari L, Tagami T, Eguchi M, Orozco-Esquivel M T, Petrone C M, Jacobo-Albarrán J and López-Martínez M 2005 Geology, geochronology and tectonic setting of Late Cenozoic volcanism along the southwestern Gulf of Mexico: the Eastern Alkaline Province revisited;J. Volcanol. Geotherm. Res. 146 284–306.

    Article  Google Scholar 

  • Ferriz H and Mahood G A 1987 Strong compositional zonation in a silicic magmatic system: Los Humeros, Mexican Neovolcanic Belt;J. Petrol. 28 171–209.

    Google Scholar 

  • Feuerbach D L, Smith E I, Walker J D and Tangeman J A 1993 The role of the mantle during crustal extension: constraints from geochemistry of volcanic rocks in the Lake Mead area, Nevada and Arizona;Geol. Soc. Am. Bull. 105 1561–1575.

    Article  Google Scholar 

  • Fitton J G, James D and Leeman W P 1991 Basic magmatism associated with Late Cenozoic extension in the western United States: compositional variations in space and time;J. Geophys. Res. 96 13, 693–13,711.

    Google Scholar 

  • Foden J D and Varne R 1980 The petrology and tectonic setting of Quaternary-Recent volcanic centres of Lombok and Sumbawa, Sunda arc;Chem. Geol. 30 210–226.

    Article  Google Scholar 

  • Fontaine-Vive M and De Goer De Herve A 1984 Deux exemples de mélange par brassage mécanique entre laves alcalines contrastées dans le strato-volcan du Cantal (Massif Central Francais). Implications volcanologiques;Bull. Volcanol. 47 807–825.

    Article  Google Scholar 

  • Frey F A, Gerlach D C, Hickey R L, Lopez-Escobar L and Munizaga-Villavicencio F 1984 Petrogenesis of the Laguna del Maule volcanic complex, Chile (36° S);Contrib. Mineral. Petrol. 88 133–149.

    Article  Google Scholar 

  • Frey F A, Garcia M O and Roden M F 1994 Geochemical characteristics of Koolau volcano: implications of intershield geochemical differences among Hawaiian volcanoes;Geochim. Cosmochim. Acta 58 1441–1462.

    Article  Google Scholar 

  • Furman T, Btyce J G, Karson J and Iotti A 2004 East African rift system (EARS) plume structure: insights from Quaternary mafic lavas of Turkana, Kenya;J. Petrol. 45 1069–1088.

    Article  Google Scholar 

  • Gamble J A, Wright I C, Woodhead J D and McCulloch M T 1995 Arc and back-arc geochemistry in the southern Kermadec arc-Ngatoro basin and offshore Taupo volcanic zone, SW Pacific; In:Volcanism associated with extension at consuming plate margins (ed.) J L Smellie, Geological Society Special Publication 193-212.

  • Garcia M O, Rhodes J M, Wolfe E W, Ulrich G E and Ho R A 1992 Petrology of lavas from episodes 2–47 of the Puu Oo eruption of Kilauea Volcano, Hawaii: evaluation of magmatic processes;Bull. Volcanol. 55 1–16.

    Article  Google Scholar 

  • García-Valladares O, Sánchez-Upton P and Santoyo E 2006 Numerical modelling of flow processes inside geothermal wells: An approach for predicting production characteristics with uncertainties;Ener. Convers. Managem. 47 1621–1643.

    Article  Google Scholar 

  • Geist D J, McBirney A R and Duncan R A 1986 Geology and petrogenesis of lavas from San Cristobal Islands, Galapos Archipelago;Geol. Soc. Am. Bull. 97 555–566.

    Article  Google Scholar 

  • Gerlach D C, Frey F A, Moreno-Roa H and Lopez-Escobar L 1988 Recent volcanism in the Puyehue-Cordon Caulle region, southern Andes, Chile (40.5°S): petrogenesis of evolved lavas;J. Petrol. 29 333–382.

    Google Scholar 

  • Gibson S A, Thompson R N, Leat P T, Dickin A P, Morrison M A, Hendry G L and Mitchell J G 1992 Asthenosphere-derived magmatism in the Rio Grande rift, western USA: implications for continental break-up; In:Magmatism and the causes of continental break-up; (eds) Storey B C, Alabaster T and Pankhurst R J, Geological Society Special Publication 61–89.

  • Gómez-Tuena A, LaGatta A B, Langmuir C H, Goldstein S L, Ortega-Gutiérrez F and Carrasco-Núñez G 2003 Temporal control of subduction magmatism in the eastern Trans-Mexican Volcanic Belt: mantle sources, slab contributions, and crustal contamination; G3 4 10.1029/2003GC000524.

  • Guevara M, Verma S P, Velasco-Tapia F, Lozano-Santa Cruz L and Girón P 2005 Comparison of linear regression models for quantitative geochemical analysis: Example of x-ray fluorescence spectrometry;Geostand. Geoanal. Res. 29 271–284.

    Article  Google Scholar 

  • Haase K M, Devey C W, Mertz D F, Stoffers P and Dieter G-S 1996 Geochemistry of lavas from Mohns Ridge, Norwegian-Greenland Sea: implications for melting conditions and magma sources near Jan Mayen;Contrib. Mineral. Petrol. 123 223–237.

    Article  Google Scholar 

  • Hall L S and Sinton J M 1996 Geochemical diversity of the large lava field on the flank of the East Pacific Rise at 8°17′S;Earth Planet. Sci. Lett. 142 241–251.

    Article  Google Scholar 

  • Han B-F, Wang S-G and Kagami H 1999 Trace element and Nd-Sr isotope constraints on origin of the Chifeng flood basalts, North China;Chem. Geol. 155 187–199.

    Article  Google Scholar 

  • Harpp K S, Fornari D J, Geist D J and Kurz M D 2003 Genovesa submarine ridge: a manifestation of plumeridge interaction in the northern Galápagos islands; G3 4 10.1029/2003GC000531.

  • Hart W K, WoldeGabriel G, Walter R C and Mertzman S A 1989 Basaltic volcanism in Ethiopia: constraints on continental rifting and mantle interactions;J. Geophys. Res. 94 7731–7748.

    Google Scholar 

  • Hazlett R W 1987 Geology of San Cristobal volcanic complex, Nicaragua;J. Volcanol. Geotherm. Res. 33 223–230.

    Article  Google Scholar 

  • Hegner E and Smith I E M 1992 Isotopic compositions of late Cenozoic volcanics from southeast Papua New Guinea: evidence for multi-component sources in arc and rift environments;Chem. Geol. 97 233–249.

    Article  Google Scholar 

  • Hekinian R, Francheteau J, Armijo R, Cogné J P, Constantin M, Girardeau J, Hey R, Naar D F and Searle R 1996 Petrology of the Easter microplate region in the South Pacific;J. Volcanol. Geotherm. Res. 72 259–289.

    Article  Google Scholar 

  • Hekinian R, Stoffers P, Devey C, Ackerman D, Hémond C and O’Connor J 1997 Intraplate versus ridge volcanism on the Pacific-Antarctic Ridge near 37°S–111°W;J. Geophys. Res. 102 12, 265–12,286.

    Google Scholar 

  • Hémond C, Devey C W and Chauvel C 1994 Source compositions and melting processes in the Society and Austral plumes (South Pacific Ocean): element and isotope (Sr, Nd, Pb, Th) geochemistry;Chem. Geol. 115 7–45.

    Article  Google Scholar 

  • Hickey R L, Frey F A, Gerlach D C and Lopez-Escobar L 1986 Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34°–41°S): trace element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust;J. Geophys. Res. 91 5963–5983.

    Google Scholar 

  • Hickey-Vargas R, Moreno Roa H, Lopez Escobar L and Frey F A 1989 Geochemical variations in Andean basaltic and silicic lavas from the Villarrica-Lanin volcanic chain (39.5°S): an evaluation of source heterogeneity, fractional crystallization and crustal assimilation;Contrib. Mineral. Petrol. 103 361–386.

    Article  Google Scholar 

  • Hole M J, Saunders A D, Marriner G F and Tarney J 1984 Subduction of pelagic sediments: implications for the origin of Ce-Anomalous basalts from the Marianas Islands;J. Geol. Soc. London 141 453–472.

    Google Scholar 

  • Hoogewerff J A, van Bergen M J, Vroon P Z, Hertogen J, Wordel R, Sneyers A, Nasution A, Varekamp J C, Moens H L E and Mouchel D 1997 U-series, Sr-Nd-Pb isotope and trace-element systematics across an active island arc-continent collision zone: implications for element transfer at the slab-wedge interface;Geochim. Cosmochim. Acta 61 1057–1072.

    Article  Google Scholar 

  • Hsu C-N, Chen J-C and Ho K-S 2000 Geochemistry of Cenozoic volcanic rocks from Kirin Province, northeast China;Geochem. J. 34 33–58.

    Google Scholar 

  • Ielsch G, Caroff M, Barsczus H G, Maury R C, Guillou H, Guille G and Cotten J 1998 Géochimie des basalts de I’ile de Ua Huka (archipel des MArquises); vartiation du taux de fusion partielle et hétérogénéité de la source mantellique;C. R. Acad. Sci. Paris 326 413–420.

    Google Scholar 

  • Ishikawa T, Tera F and Nakazawa T 2001 Boron isotope and trace element systematics of the three volcanic zones in the Kamchatka arc;Geochim. Cosmochim. Acta 65 4523–4537.

    Article  Google Scholar 

  • Johnson C M and Lipman P W 1988 Origin of metaluminous and alkaline volcanic rocks of the Latir volcanic field, northern Rio Grande rift, New Mexico;Contrib. Mineral. Petrol. 100 107–128.

    Article  Google Scholar 

  • Kabeto K, Sawada Y, Iizumi S and Wakatsuki T 2001 Mantle sources and magma-crust interactions in volcanic rocks from northern Kenya rift: geochemical evidence;Lithos 56 111–136.

    Article  Google Scholar 

  • Kay S M and Kay R W 1994 Aleutian magmas in space and time; In:Geology of North America (eds) Plafker G and Berg H C (USA: Geological Society of America) 687–722.

    Google Scholar 

  • Kay S M, Kay R W and Citron G P 1982 Tectonic controls on tholeiitic and calc-alkaline magmatism in the Aleutian arc;J. Geophys. Res. 87 4051–4072.

    Google Scholar 

  • Kempton P D, Fitton J G, Hawkesworth C J and Ormerod D S 1991 Isotopic and trace element constraints on the composition and evolution of the lithosphere beneath the Southwestern United States;J. Geophys. Res. 96 13, 713–13,735.

    Google Scholar 

  • Kepezhinskas P, McDermott F, Defant M J, Hochstaedter A, Drummond M S, Hawkesworth C J, Koloskov A, Maury R C and Bellon H 1997 Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka arc petrogenesis;Geochim. Cosmochim. Acta 61 577–600.

    Article  Google Scholar 

  • Kimura J-I, Manton W I, Sun C-H, Iizumi S, Yoshida T and Stern R J 2002 Chemical diversity of the Ueno basalts, Central Japan: identification of mantle and crustal contributions to arc basalts;J. Petrol. 43 1923–1946.

    Article  Google Scholar 

  • Kita I, Yamamoto M, Asakawa Y, Nakagawa M, Taguchi S and Hasegawa H 2001 Contemporaneous ascent of within-plate type and island-arc type magmas in the Beppu-Shimabara graben system, Kyushu island, Japan;J. Volcanol. Geotherm. Res. 111 99–109.

    Article  Google Scholar 

  • Knittel U, Hegner E, Bau M and Satir M 1997 Enrichment processes in the sub-arc mantle: a Sr-Nd-Pb isotopic and REE study of primitive arc basalts from the Philippines;Can. Mineral. 35 327–346.

    Google Scholar 

  • Kochhar N 1984 Malani igneous suite: hot spot magmatism and cratonisation of the northern part of the Indian shield;J. Geol. Soc. India 25 155–161.

    Google Scholar 

  • Lassiter J C, Blichert-Toft J and Hauri E H 2003 Isotope and trace element variations in lavas from Raivavae and Rapa, Cook-Austral islands: constraints on the nature of HIMU- and EM-mantle and the origin of mid-plate volcanism in French Polynesia;Chem. Geol. 202 115–138.

    Article  Google Scholar 

  • Le Bas M J, Le Maitre R W, Streckeisen A and Zanettin B 1986 A chemical classification of volcanic rocks based on the total alkali-silica diagram;J. Petrol. 27 745–750.

    Google Scholar 

  • Le Maitre R W 1976 Some problems of the projection of chemical data into mineralogical classifications;Contrib. Mineral. Petrol. 56 181–189.

    Article  Google Scholar 

  • Le Roex A P and Dick H J B 1981 Petrography and geochemistry of basaltic rocks from the Conrad fracture zone on the America-Antarctica Ridge;Earth Planet. Sci. Lett. 54 117–138.

    Article  Google Scholar 

  • Le Roex A P and Erlank A J 1982 Quantitative evaluation of fractional crystallization in Bouvet Island lavas;J. Volcanol. Geotherm. Res. 13 309–338.

    Article  Google Scholar 

  • Le Roex A P, Dick H J B, Gulen L, Reid A M and Erlank A J 1987 Local and regional heterogeneity in MORB from the Mid-Atlantic Ridge between 54.5°S and 51°S: evidence for geochemical enrichment;Geochim. Cosmochim. Acta 51 541–555.

    Article  Google Scholar 

  • Le Roex A P, Frey F A and Richardson S H 1996 Petrogenesis of lavas from the AMAR Valley and Narrowgate region of the FAMOUS Valley, 36°–37°N on the Mid-Atlantic Ridge;Contrib. Mineral. Petrol. 124 167–184.

    Article  Google Scholar 

  • Le Roex A P, Späth A and Zartman R E 2001 Lithospheric thickness beneath the southern Kenya rift: implications from basalt geochemistry;Contrib. Mineral. Petrol. 142 89–106.

    Article  Google Scholar 

  • Le Roux P J, Le Roux A P and Schilling J-G 2002a Crystallization process beneath the southern Mid-Atlantic Ridge (40°–55° S), evidence for high pressure initiation of crystallization;Contrib. Mineral. Petrol. 142 582–602.

    Article  Google Scholar 

  • Le Roux P J, Le Roux A P, Schilling J-G, Shimizu N, Perkins W W and Pearce N J G 2002b Mantle heterogeneity beneath the southern Mid-Atlantic Ridge: trace element evidence for contamination of ambient asthenospheric mantle;Earth Planet. Sci. Lett. 203 479–498.

    Article  Google Scholar 

  • Liotard J M, Barsczus H G, Dupuy C and Dostal J 1986 Geochemistry and origin of basaltic lavas from Marquesas Archipelago, French Polynesia;Contrib. Mineral. Petrol. 92 260–268.

    Article  Google Scholar 

  • Lipman P W, Rhodes R M and Dalrymple G B 1990 The Ninole Basalt — Implications for the structural evolution of Mauna Loa volcano, Hawaii;Bull. Volcanol. 53 1–19.

    Article  Google Scholar 

  • Liu C-Q, Masuda A and Xie G-H 1992 Isotope and traceelement geochemistry of alkali basalts and associated megacrysts from the Huangyishan volcano, Kuandian, Liaoning, NE China;Chem. Geol. 97 219–231.

    Article  Google Scholar 

  • Liu C-Q, Masuda A and Xie G-H 1994 Major- and traceelement compositions of Cenozoic basalts in eastern China: petrogenesis and mantle source;Chem. Geol. 114 19–42.

    Article  Google Scholar 

  • Lonsdale P, Blum N and Puchelt H 1992 The RRR triple junction at the southern end of the Pacific-Cocos East Pacific Rise;Earth Planet. Sci. Lett. 109 73–85.

    Article  Google Scholar 

  • López-Escobar L, Kilian R, Kempton P D and Tagiri M 1993 Petrography and geochemistry of Quaternary rocks from the southern volcanic zone of the Andes between 41°30′ and 46°00′S, Chile;Rev. Geol. Chile 20 33–35.

    Google Scholar 

  • Luhr J F, Aranda-Gómez J J and Housh T B 1995 San Quintín volcanic field, Baja California Norte, México: geology, petrology, and geochemistry;J. Geophys. Res. 100 10, 353–10,380.

    Google Scholar 

  • Lum C C L, Leeman W P, Foland K A, Kargel J A and Fitton J G 1989 Isotopic variations in continental basaltic lavas as indicators of mantle heterogeneity: examples from the western U.S. Cordillera;J. Geophys. Res. 94 7871–7884.

    Google Scholar 

  • Maaløe S, James D, Smedley P, Petersen S and Germann L B 1992 The Koloa volcanic suite of Kauai, Hawaii;J. Petrol. 33 761–784.

    Google Scholar 

  • Macdonald R, Davies G R, Upton B G J, Denkley P N, Smith M and Leat P T 1995 Petrogenesis of Silali volcano, Gregory rift, Kenya;J. Geol. Soc. London 152 703–720.

    Google Scholar 

  • Macdonald R, Rogers N W, Fitton J G, Black S and Smith M 2001 Plume-lithosphere interactions in the generation of the basalts of the Kenya rift, East Africa;J. Petrol. 42 877–900.

    Article  Google Scholar 

  • Maheshwari A, Coltorti M, Sial AN and Mariano G 1996 Crustal influences in the petrogenesis of the Malani rhyolite, southwestern Rajasthan: combined trace element and oxygen isotope constraints;J. Geol. Soc. India 47 611–619.

    Google Scholar 

  • Mahoney J, Le Roex A P, Peng Z, Fisher R L and Natland J H 1992 Southwestern limits of Indian Ocean ridge mantle and the origin of low206Pb/204Pb Mid-Ocean Ridge Basalt: isotope systematics of the central southwestern Indian Ridge (17°–50°E);J. Geophys. Res. 97 19, 771–19,790.

    Google Scholar 

  • McMillan N J, Dickin A P and Haag D 2000 Evolution of magma source regions in the Rio Grande rift, southern New Mexico;Geol. Soc. Am. Bull. 112 1582–1593.

    Article  Google Scholar 

  • Melluso L, Beccaluva L, Brotzu P, Gregnanin A, Gupta A K, Morbidelli L and Traversa G 1995 Constraints on the mantle sources of the Deccan Traps from the petrology and geochemistry of the basalts of Gujarat state (western India);J. Petrol. 36 1393–1432.

    Google Scholar 

  • Melluso L, Barbieri M and Beccaluva L 2004 Chemical evolution, petrogenesis, and regional chemical correlations of the flood basalt sequence in the central Deccan Traps, India;Proc. Indian Acad. Sci. (Earth Planet. Sci.) 113 587–603.

    Google Scholar 

  • Middlemost E A K 1989 Iron oxidation ratios, norms and the classification of volcanic rocks;Chem. Geol. 77 19–26.

    Article  Google Scholar 

  • Miklius A, Flower M F J, Huijsmans J P P, Mukasa S B and Castillo P 1991 Geochemistry of lavas from Taal volcano, southwestern Luzon, Philippines: evidence for multiple magma supply systems and mantle source heterogeneity;J. Petrol. 32 593–627.

    Google Scholar 

  • Monzier M, Robin C, Eissen J-P and Cotten J 1997 Geochemistry vs. seismo-tectonics along the volcanic New Hebrides Central Chain (Southwest Pacific);J. Volcanol. Geotherm. Res. 78 1–29.

    Article  Google Scholar 

  • Morrison D F 1990Multivariate statistical methods (Third Edition); (New York: McGraw-Hill) 495 p.

    Google Scholar 

  • Morton-Bermea O 1990Zur petrologie des Alkaligesteins-Intrusivkomplexes der Sierra de Picachos (Nuevo León, Mexiko); Diplomarbeit thesis. Universität Karlsruhe, Karlsruhe, Germany, 115 p.

    Google Scholar 

  • Moyer T C and Esperança S 1989 Geochemical and isotopic variations in a bimodal magma system: the Kaiser Spring volcanic field, Arizona;J. Geophys. Res. 94 7841–8759.

    Google Scholar 

  • Mullen E D 1983 MnO/TiO2/P2O5: a minor element discrimination for basaltic rocks of oceanic environments and its implications for petrogenesis;Earth Planet. Sci. Lett. 62 53–62.

    Article  Google Scholar 

  • Myers J D, Marsh B D and Sinha A K 1985 Strontium isotopic and selected trace element variations between two Aleutian volcanic centers (Adak and Atka): implications for the development of arc volcanic plumbing systems;Contrib. Mineral. Petrol. 91 221–234.

    Article  Google Scholar 

  • Myers J D, Marsh B D, Frost C D and Linton J A 2002 Petrologic constraints on the spatial distribution of crustal magma chambers, Atka volcanic center, central Aleutian arc;Contrib. Mineral. Petrol. 143 567–586.

    Article  Google Scholar 

  • Nakagawa M, Ishizuka Y, Kudo T, Yoshimoto M, Hirose W, Ishizaki Y, Gouchi N, Katsui Y, Solovyow A W, Steinberg G S and Abdurakhmanov A I 2002 Tyatya volcano, southwestern Kuril arc: recent eruptive activity inferred from widespread tephra;The Island Arc 11 236–254.

    Article  Google Scholar 

  • Negendank J F W, Emmermann R, Krawczyk R, Mooser F, Tobschall H and Werle D 1985 Geological and geochemical investigations on the eastern Trans Mexican Volcanic Belt;Geofís. Int. 24 477–575.

    Google Scholar 

  • Nelson S A, Gonzalez-Caver E and Kyser T K 1995 Constraints on the origin of alkaline and calc-alkaline magmas from the Tuxtla Volcanic Field, Veracruz, Mexico;Contrib. Mineral. Petrol. 122 191–211.

    Article  Google Scholar 

  • Nick K 1988 Mineralogische, Geochemische und Petrographische Untersuchungen in der Sierra de San Carlos (Mexiko); Unpubl. Doctoral thesis, Universitaet (TH) Fridericiana Karlsruhe, Karlsruhe, Germany, 167 p.

    Google Scholar 

  • Norman M D and García M O 1999 Primitive magmas and source characteristics of the Hawaiian plume: petrology and geochemistry of shield picrites;Earth Planet. Sci. Lett. 168 27–44.

    Article  Google Scholar 

  • Nye C J and Reid M R 1986 Geochemistry of primary and least fractionated lavas from Okmok volcano, central Aleutians: implications for arc magma genesis;J. Geophys. Res. 91 10, 271–10,287.

    Google Scholar 

  • Ohara Y, Fujioka K, Ishizuka O and Ishii T 2002 Peridotites and volcanics from the Yap arc system: implications for tectonics of the southern Philippine Sea plate;Chem. Geol. 189 35–53.

    Article  Google Scholar 

  • Orozco-Esquivel M T 1995Zur Petrologie des Vulkangebietes von Palma-Sola, Mexiko. Ein Beispiel fuer den Uebergang von anorogenem zu orogenem Vulkanismus; Doctoral thesis. Universitaet Karlsruhe, Karlsruhe, Germany, 167 p.

    Google Scholar 

  • Panter K S, Hart S R, Kyle P, Blusztanjn J and Witch T 2000 Geochemistry of late Cenozoic basalts from the Crary mountains: characterization of mantle sources in Marie Byrd land, Antarctica;Chem. Geol. 165 215–241.

    Article  Google Scholar 

  • Pearce J A and Cann J R 1971 Ophiolite origin investigated by discriminant analysis using Ti, Zr and Y;Earth Planet. Sci. Lett. 12 339–349.

    Article  Google Scholar 

  • Pearce J A and Cann J R 1973 Tectonic setting of basic volcanic rocks determined using trace element analyses;Earth Planet. Sci. Lett. 19 290–300.

    Article  Google Scholar 

  • Pearce J A 1976 Statistical analysis of major element patterns in basalts;J. Petrol. 17 15–43.

    Google Scholar 

  • Peccerillo A, Barberio M R, Yirgu G, Ayalew D, Barbieri M and Wu T W 2003 Relationships between mafic and peralkaline silicic magmatism in continental rift settings: a petrological, geochemical and isotopic study of the Gedemsa volcano, central Ethiopian rift;J. Petrol. 44 2003–2032.

    Article  Google Scholar 

  • Peng Z C, Zartman R E, Futa K and Chen D G 1986 Pb-, Sr- and Nd-isotopic systematics and chemical characteristics of Cenozoic basalts, eastern China;Chem. Geol. 59 3–33.

    Article  Google Scholar 

  • Peng Z X, Mahoney J, Hooper P, Harris C and Beane J 1994 A role for lower continental crust in flood basalt genesis? Isotopic and incompatible study of the lower six formations of the western Deccan traps;Geochim. Cosmochim. Acta 58 267–288.

    Article  Google Scholar 

  • Perry F V, Baldridge W S and DePaolo D J 1987 Role of asthenosphere and lithosphere in the genesis of Late Cenozoic basaltic rocks from the Rio Grande and adjacent regions of the southwestern United States;J. Geophys. Res. 92 9193–9213.

    Article  Google Scholar 

  • Perry F V, Baldridge W S, DePaolo D J and Shafiqullah M 1990 Evolution of a magmatic system during continental extension: the mount Taylor volcanic field, New Mexico;J. Geophys. Res. 95 19, 327–19,348.

    Google Scholar 

  • Price R C, Kennedy A K, Riggs-Sneeringer M and Frey F A 1986 Geochemistry of basalts from the Indian Ocean triple junction: implications for the generation and evolution of Indian Ocean ridge basalts;Earth Planet. Sci. Lett. 78 379–396.

    Article  Google Scholar 

  • Rajani R P, Banakar V K, Parthiban G, Mudholkar A V and Chodankar A R 2005 Compositional variation of ferromanganese crusts of the Afanasiy-Nikitin seamount, equatorial Indian Ocean;J. Earth Syst. Sci. 114 51–61.

    Google Scholar 

  • Ramírez Fernández J A 1996Zur petrogenese des alkalikomplexes der Sierra de Tamaulipas, NE-Mexiko; Doctoral thesis. Albert-Ludwigs-Universitaet, Freiburg, Germany, 316 p.

    Google Scholar 

  • Raos A M and Crawford A J 2004 Basalts from the Afate Island group, central section of the Vanuatu arc, SW Pacific: geochemistry and petrogenesis;J. Volcanol. Geotherm. Res. 134 35–64.

    Article  Google Scholar 

  • Reyment R A 1987 Multivariate analysis in Geoscience: fads, fallacies and the future;Chemom. Intell. Lab. Sist. 2 79–91.

    Article  Google Scholar 

  • Reyment R A and Savazzi E 1999Aspects of multivariate statistical analysis in geology; (Amsterdam: Elsevier) 285 p.

    Google Scholar 

  • Robin C 1976 Présence simultanée de magmatismes de significations tectoniques opposées dans l’Est du Mexique;Bull. Soc. Geol. Fr. 18 1637–1645.

    Google Scholar 

  • Robin C 1982 Relations volcanologie-magmatologie-géodynamique: application au passage entre volcanismes alcalin et andésitique dans le sud Mexicain (Axe Transmexicain et Province Alcaline Orientale);Annal. Sci. Univ. Clermont-Ferrand II 31 503 p.

  • Robin C and Tournon J 1978 Spatial relations of andesitic and alkaline provinces of Mexico and Central America;Can. J. Earth Sci. 15 1633–1641.

    Google Scholar 

  • Rollinson H R 1993Using geochemical data: evaluation, presentation, interpretation; (Essex: Longman Scientific Technical) 344 p.

    Google Scholar 

  • Romick J D, Perfit M R, Swanson S E and Shuster R D 1990 Magmatism in the eastern Aleutian arc: temporal characteristic of igneous activity on Akutan Island;Contrib. Mineral. Petrol. 104 700–721.

    Article  Google Scholar 

  • Sakuyama M and Nesbitt R W 1986 Geochemistry of the Quaternary volcanic rocks of the Northeast Japan arc;J. Volcanol. Geotherm. Res. 29 413–450.

    Article  Google Scholar 

  • Santoyo E, Guevara M and Verma S P 2006 Determination of lanthanides in international geochemical reference materials by reversed-phase high performance liquid chromatography: An application of error propagation theory to estimate total analysis uncertainties;J. Chromatogr. A (in press).

  • Schilling J-G, Kingsley R H and Devine J D 1982 Galapagos hot spot-spreading center system. 1. Spatial petrological and geochemical variations (83°W–101°W);J. Geophys. Res. 87 5593–5610.

    Google Scholar 

  • Schilling J-G, Zajac M, Evans R, Johnston T, White W, Devine J D and Kingsley R 1983 Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29° N to 73°N;J. Am. Sci. 283 510–586.

    Article  Google Scholar 

  • Sensarma S, Hoernes S and Mukhopadhyay D 2004 Relative contributions of crust and mantle to the origin of the Bijli rhyolite in a palaeoproterozoic bimodal volcanic sequence (Dongargarh Group), central India;Proc. Indian Acad. Sci. (Earth Planet. Sci.) 113 619–648.

    Google Scholar 

  • Sharma K K 2004 The Neoproterozoic Malani magmatism of the northwestern Indian shield: implications for crust-building processes;Proc. Indian Acad. Sci. (Earth Planet. Sci.) 113 795–807.

    Google Scholar 

  • Sheth H C, Torres-Alvarado I S and Verma S P 2000 Beyond subduction and plumes: a unified tectonic-petrogenetic model for the Mexican Volcanic Belt;Int. Geol. Rev. 42 1116–1132.

    Google Scholar 

  • Sheth H C, Torres-Alvarado I S and Verma S P 2002 What is the “calc-alkaline rock series”?;Int. Geol. Rev. 44 686–701.

    Google Scholar 

  • Sheth H C, Mahoney J J, Baxter A N 2003 Geochemistry of lavas from Mauritius, Indian Ocean: Mande source’s and petrogenesis;Int. Geol. Rev. 45 780–797.

    Google Scholar 

  • Sheth H C, Mahoney J J and Chandrasekharam D 2004 Geochemical stratigraphy of Deccan flood basalts of the Bijasan Ghat section, Satpura range, India;J. Asian Earth Sci. 23 127–139.

    Article  Google Scholar 

  • Shimizu N and Arculus R J 1975 Rare earth element concentrations in a suite of basanitoids and alkali olivine basalts from Grenada, Lesser Antilles;Contrib. Mineral. Petrol. 50 231–240.

    Article  Google Scholar 

  • Shinjo R 1998 Petrochemistry and tectonic significance of the emerged late Cenozoic basalts behind the Okinawa Trough Ryukyu arc system;J. Volcanol. Geotherm. Res. 80 39–53.

    Article  Google Scholar 

  • Shinjo R, Woodhead J D and Hergt J M 2000 Geochemical variation within the northern Ryukyu: magma source compositions and geodynamic implications;Contrib. Mineral. Petrol. 140 263–282.

    Article  Google Scholar 

  • Siebert L and Carrasco-Núñez G 2002 Late-Pleistocene to precolumbian behind-the-arc mafic volcanism in the eastern Mexican Volcanic Belt; implications for future hazards;J. Volcanol. Geotherm. Res. 115 179–205.

    Article  Google Scholar 

  • Sims K W W, Blichert-Toft J, Fornari D J, Perfit M R, Goldstein S J, Johnson P, DePaolo D J, Hart S R, Murrell M T, Michael P J, Layne G D and Ball L A 2003 Aberrant youth: chemical and isotopic constraints on the origin of off-axis lavas from the East Pacific Rise, 9°–10°N; G3 4 10.1029/2002GC000443.

  • Singer B S and Kudo A M 1986 Assimilation-fractional crystallization of Polvadera Group rocks in the northwestern Jemez volcanic field, New Mexico;Contrib. Mineral. Petrol. 94 374–386.

    Article  Google Scholar 

  • Singer B S, Myers J D and Frost C D 1992a Mid-Pleistocene lavas from the Seguam volcanic center, central Aleutian arc: closed-system fractional crystallization of a basalt to rhyodacite eruptive suite;Contrib. Mineral. Petrol. 110 87–112.

    Article  Google Scholar 

  • Singer B S, Myers J D and Frost C D 1992b Mid-Pleistocene basalt from the Seguam volcanic center, central Aleutian arc, Alaska: local lithospheric structures and source variability in the Aleutian arc;J. Geophys. Res. 97 4561–4578.

    Google Scholar 

  • Singh B and Kumar S 2005 Petrogenetic appraisal of early Palaeozoic granitoids of Kinnaur district, higher Himachal Himalaya, India:Gondwana Res. 8 67–76.

    Article  Google Scholar 

  • Singh K A and Vallinayagam G 2004 Geochemistry and petrogenesis of anorogenic basic volcanic-plutonic rocks of the Kundal area, Malani ifneous suite, western Rajasthan, India;Proc. Indian Acad. Sci. (Earth Planet. Sci.) 113 667–681.

    Google Scholar 

  • Skala W 1977 A mathematical model to investigative distortions of correlation coefficients in closed arrays;Math. Geol. 9 519–528.

    Article  Google Scholar 

  • Skala W 1979 Some aspects of the constant-sum problem in geochemistry;Chem. Geol. 27 1–9.

    Article  Google Scholar 

  • Slater L, Jull M, McKenzie D and Gronvöld K 1998 Deglaciation effects on mantle melting under Iceland: results from the northern volcanic zone;Earth Planet. Sci. Lett. 164 151–164.

    Article  Google Scholar 

  • Smellie J L 1983 A geochemical overview of subduction-related igneous activity in the South Shetland islands, Lesser Antarctica; In:Antarc. Earth Sci. (eds) Oliver R L, James P R and Jago J B (Australian Academy of Sciences and Cambridge University Press) 352-356.

  • Smith E I, Sánchez A, Walker J D and Wang K 1999 Geochemistry of mafic magmas in the Hurricane Volcanic Field, Utah: implications of small- and large-scale chemical variability of the lithospheric mantle;J. Geol. 107 433–448.

    Article  Google Scholar 

  • Smith I E M, Stewart R B and Price R C 2003 The petrology of a large intra-oceanic silicic eruption: the Sandy Bay tephra, Kermadec arc, southwest Pacific;J. Volcanol. Geotherm. Res. 124 173–194.

    Article  Google Scholar 

  • Smith T E, Thirlwall M F and MacPherson C 1996 Trace element and isotope geochemistry of the volcanic rocks of Bequia, Grenadine Islands, Lesser Antilles Arc: a study of subduction enrichment and intra-crustal contamination;J. Petrol. 37 117–143.

    Article  Google Scholar 

  • Srivastava R K, Hall R P, Verma R and Singh R K 1996 Contrasting Precambrian mafic dykes of the Bastar Craton, Central India: petrological and geochemical characteristics;J. Geol. Soc. India 48 537–546.

    Google Scholar 

  • Srivastava R K, Chandra R and Shastry A 2004a High-Ti type N-MORB parentage of basalts from the south Andaman ophiolite suite, India;Proc. Indian Acad. Sci. (Earth Planet. Sci.) 113 605–618.

    Google Scholar 

  • Srivastava R K, Singh R K and Verma S P 2004b Neoarchaean mafic volcanic rocks from the southern Bastar greenstone belt, Central India: petrological and tectonic significance;Precamb. Res. 131 305–322.

    Article  Google Scholar 

  • Srivastava R K and Singh R K 2003 Geochemistry of high-Mg mafic dykes from the Bastar craton: evidence of late Archean boninite-like rocks in an intracratonic setting;Curr. Sci. 85 808–812.

    Google Scholar 

  • Srivastava R K and Singh R K 2004 Trace element geochemistry and genesis of Precambrian sub-alkaline mafic dikes from the central Indian craton: evidence for mantle metasomatism;J. Asian Earth Sci. 23 373–389.

    Article  Google Scholar 

  • Srivastava R K and Sinha A K 2004 Geochemistry and petrogenesis of early Cretaceous sub-alkaline mafic dykes from Swangkre-Rongmil, East Garo Hills, Shillong plateau, northeast India;Proc. Indian Acad. Sci. (Earth Planet. Sci.) 113 683–697.

    Google Scholar 

  • Stephenson D and Marshall T R 1984 The petrology and mineralogy of Mt. Popa volcano and the nature of the late-Cenozoic Burma volcanic arc;J. Geol. Soc. London 141 747–762.

    Google Scholar 

  • Stolz A J, Varne R, Wheller G E, Foden J D and Abbott M J 1988 The geochemistry and petrogenesis of K-rich alkaline volcanics from the Batu Tara volcano, eastern Sunda arc;Contrib. Mineral. Petrol. 98 374–389.

    Article  Google Scholar 

  • Stolz A J, Varne R, Davies G R, Wheller G E and Fodon J D 1990 Magma source components in an arc-continent collision zone: the Flores-Lembata sector, Sunda arc, Indonesia;Contrib. Mineral. Petrol. 105 585–601.

    Article  Google Scholar 

  • Storey M, Rogers G, Saunders A D and Terrell D J 1989 San Quintín volcanic field, Baja California, Mexico: ‘within plate’ magmatism following ridge subduction;Terra Nova 1 195–202.

    Article  Google Scholar 

  • Tamura Y 1994 Genesis of island arc magmas by mantle derived bimodal magmatism: evidence from the Shiraham group, Japan;J. Petrol. 35 619–645.

    Google Scholar 

  • Tatsumi Y, Murasaki M, Arsadi E M and Nohda S 1991 Geochemistry of Quaternary lavas from NE Sulawesi: transfer of subduction components into the mantle wedge;Contrib. Mineral. Petrol. 107 137–149.

    Article  Google Scholar 

  • Tatsumi Y, Murasaki M and Nohda S 1992 Across-arc variation of lava chemistry in the Izu-Bonin arc: identification of subduction components;J. Volcanol. Geotherm. Res. 49 179–190.

    Article  Google Scholar 

  • Taylor R N and Nesbitt R W 1998 Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu-Bonin Arc, Japan;Earth Planet. Sci. Lett. 164 79–98.

    Article  Google Scholar 

  • Thirlwall M F and Graham A M 1984 Evolution of high-Ca, high-Sr C-series basalts from Grenada, Lesser Antilles: the effects of intra-crustal contamination;J. Geol. Soc. London 141 427–445.

    Google Scholar 

  • Thirlwall M F, Graham A M, Arculus R J, Harmon R S and Macpherson C G 1997 Resolution of the effects of crustal assimilation, sediment subduction, and fluid transport in island arc magmas: Pb-Sr-Nd-O isotope geochemistry of Grenada, Lesser Antilles;Geochim. Cosmochim. Acta 60 4785–4810.

    Article  Google Scholar 

  • Thorpe R S 1977 Tectonic significance of alkaline volcanism in eastern Mexico;Tectonophysics 40 19–26.

    Article  Google Scholar 

  • Togashi S, Tanaka T, Yoshida T, Ishikawa K-I, Fujinawa A and Kurasawa H 1992 Trace elements and Nd-Sr isotopes of island arc tholeiites from frontal arc of northeast Japan;Geochem. J. 26 261–277.

    Google Scholar 

  • Tormey D R, Hickey-Vargas R, Frey F A and López-Escobar L 1991 Recent lavas from Andean volcanic front (33 to 42° S): Interpretations of along-arc compositional variations; In:Andean magmatism and its tectonic setting (eds) Harmon R S and Rapela C W, Geological Society of America Special Paper265 57–77.

  • Treviño-Cázares A, Ramírez-Fernández J A, Velasco-Tapia F, Rodríguez-Saavedra P 2005 Mantle xenoliths and their host magmas in the Eastern Alkaline Province, northeast Mexico;Int. Geol. Rev. 47 1260–1286.

    Google Scholar 

  • Trua T, Deniel C and Mazzuoli R 1999 Crustal control in the genesis of Plio-Quaternary bimodal magmatism of the Main Ethiopian Rift (MER): geochemical and isotopic (Sr, Nd, Pb) evidence;Chem. Geol. 155 201–231.

    Article  Google Scholar 

  • Turner S and Foden J 2001 U, Th and Ra disequilibria, Sr, Nd and Pb isotope and trace element variations in Sunda arc lavas: predominance of a subducted sediment component;Contrib. Mineral. Petrol. 142 43–57.

    Article  Google Scholar 

  • Turner S, Foden J, George R, Evans P, Varne R, Elburg M and Jenner G 2003 Rates and processes of potassic magma evolution beneath Sangeang Api volcano, East Sunda arc, Indonesia;J. Petrol. 44 491–515.

    Article  Google Scholar 

  • Velasco-Tapia F and Verma S P 2001 First partial melting inversion model for a rift-related origin of the Sierra de Chichinautzin volcanic field, central Mexican Volcanic Belt;Int. Geol. Rev. 43 788–817.

    Article  Google Scholar 

  • Verma S P 1983 Magma genesis and chamber processes at Los Humeros caldera, Mexico — Nd and Sr isotope data;Nature 301 52–55.

    Article  Google Scholar 

  • Verma S P 2000a Geochemistry of the subducting Cocos plate and the origin of subduction — unrelated mafic volcanism at the volcanic front of the central Mexican Volcanic Belt; In:Cenozoic tectonics and volcanism of Mexico (eds) Delgado-Granados H, Aguirre-Díaz G and Stock J M, Geological Soceity of America Special Paper334 195-222.

  • Verma S P 2000b Error propagation in equations for geochemical modelling of radiogenic isotopes in two-component mixing;Proc. Indian Acad. Sci. (Earth Planet. Sci.) 109 79–88.

    Google Scholar 

  • Verma S P 2000c Geochemical evidence for a lithospheric source for magmas from Los Humeros caldera, Puebla, Mexico;Chem. Geol. 164 35–60.

    Article  Google Scholar 

  • Verma S P 2001 Geochemical evidence for a lithospheric source for magmas from Acoculco caldera, eastern Mexican Volcanic Belt;Int. Geol. Rev. 43 31–51.

    Google Scholar 

  • Verma S P 2002 Absence of Cocos plate subduction-related basic volcanism in southern Mexico: a unique case on Earth?;Geology 30 1095–1098.

    Article  Google Scholar 

  • Verma S P 2004 Solely extension-related origin of the eastern to west-central Mexican Volcanic Belt (Mexico) from partial melting inversion model;Curr. Sci. 86 713–719.

    Google Scholar 

  • Verma S P 2005 Estadística básica para el manejo de datos experimentales: aplicación en la Geoquímica (Geoquimiometría); México, D.F., UNAM, 186 p.

    Google Scholar 

  • Verma S P 2006 Extension related origin of magmas from a garnet-bearing source in the Los Tuxtlas volcanic field, Mexico;Int. J. Earth Sci. (in press).

  • Verma S P and Schilling J-G 1982 Galapagos hot spot — spreading center system. 2.87Sr/86Sr and large lithophile element variations (85°W–101°W);J. Geophys. Res. 87 10, 838–10,856.

    Google Scholar 

  • Verma S P and Santoyo E 1997 New improved equations for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection;J. Volcanol. Geotherm. Res. 79 9–23.

    Article  Google Scholar 

  • Verma S P, Salazar-V A, Negendank J F W, Milán M, Navarro-L I and Besch T 1993 Características petrográficas y geoquímicas de elementos mayores del campo volcánico de Los Tuxtlas, Veracruz, México;Geofís. Int. 32 237–248.

    Google Scholar 

  • Verma S P, Torres-Alvarado I S and Sotelo-Rodríguez Z T 2002 SINCLAS: standard igneous norm and volcanic rock classification system;Comput. Geosci. 28 711–715.

    Article  Google Scholar 

  • Verma S P, Torres-Alvarado I S and Velasco-Tapia F 2003 A revised CIPW norm;Schweiz. Miner. Petrog. Mitteil. 83 197–216.

    Google Scholar 

  • Verma S P, Andaverde J and Santoyo E 2006 Statistical evaluation of methods for the calculation of static formation temperatures in geothermal and oil wells using an extension of the error propagation theory;J. Geochem. Explor. 89 398–404.

    Article  Google Scholar 

  • Vermeesch P 2006 Tectonic discrimination of basalts with classification trees;Geochim. Cosmochim. Acta 70 1839–1848.

    Article  Google Scholar 

  • Verwoerd W J, Erlank A J and Kable E J D 1976Geology and geochemistry of Bouvet island; Proceedings of the Symposium on “Andean and Antarctic Volcanology Problems”, Santiago, Chile 201-237.

  • Walker J A, Carr M J, Feigenson M D and Kalamarides R I 1990 The petrogenetic significance of interstratified high- and low-Ti basalts in central Nicaragua;J. Petrol. 31 1141–1164.

    Google Scholar 

  • Walker J A, Patino L C, Carr M J and Feigenson M D 2001 Slab control over HFSE depletions in central Nicaragua;Earth Planet. Sci. Lett. 192 533–543.

    Article  Google Scholar 

  • West H B, Garcia M O, Gerlach D C and Romero J 1992 Geochemistry of tholeiites from Lanai, Hawaii;Contrib. Mineral. Petrol. 112 520–542.

    Article  Google Scholar 

  • Wheller G E, Varne R, Foden J D and Abbott M J 1987 Geochemistry of Quaternary volcanism in the Sunda-Banda arc, Indonesia, and three-component genesis of island-arc basaltic magmas;J. Volcanol. Geotherm. Res. 32 137–160.

    Article  Google Scholar 

  • White W M, McBirney A R and Duncan R A 1993 Petrology and geochemistry of the Galápagos Islands: portrait of a pathological mantle plume;J. Geophys. Res. 98 19, 533–19,563.

    Google Scholar 

  • Whitford D J, Nicholls I A and Taylor S R 1979 Spatial variations in the geochemistry of Quaternary lavas across the Sunda arc in Java and Bali;Contrib. Mineral. Petrol. 70 341–356.

    Article  Google Scholar 

  • Woodhead J D 1988 The origin of geochemical variations in Mariana lavas: a general model for petrogenesis in intraoceanic island arcs;J. Petrol. 29 805–830.

    Google Scholar 

  • Woodhead J D and Johnson R W 1993 Isotopic and traceelement profiles across the New Britain island arc, Papua New Guinea;Contrib. Mineral. Petrol. 113 479–491.

    Article  Google Scholar 

  • Woronow A and Love K M 1990 Quantifying and testing differences among means of compositional data;Math. Geol. 22 837–852.

    Article  Google Scholar 

  • Yellur D D and Nair R S 1978 Assigning a magmatically defined tectonic environment to Chitradurga metabasalts, India, by geochemical methods;Precamb. Res. 7 259–281.

    Article  Google Scholar 

  • Zellmer G F, Hawkesworth C J, Sparks R S J, Thomas L E, Harford C L, Brewer T S and Loughlin S C 2003 Geochemical evolution of the Soufrière Hills volcano, Montserrat, Lesser Antilles volcanic arc;J. Petrol. 44 1349–1374.

    Article  Google Scholar 

  • Zhang M, Suddaby P, Thompson R N, Thirlwall M F and Menzies M A 1995 Potassic volcanic rocks in NE China: geochemical constraints on mantle source and magma genesis;J. Petrol. 36 1275–1303.

    Google Scholar 

  • Zhi X, Song Y, Frey F A, Feng J and Zhai M 1990 Geochemistry of Hannuoba basalts, eastern China: constraints on the origin of continental alkalic and tholeiitic basalt;Chem. Geol. 88 1–33.

    Article  Google Scholar 

  • Zhuravlev D Z, Tsvetkov A A, Zhuravlev A Z, Gladkov N G and Chernysheva I V 1987143Nd/144Nd and87Sr/86Sr ratios in recent magmatic rocks of the Kurile Island Arc;Chem. Geol. 66 227–243.

    Google Scholar 

  • Zou H, Zindler A, Xisheng X and Qi Q 2000 Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations and tectonic significance;Chem. Geol. 171 33–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, S.P., Guevara, M. & Agrawal, S. Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log — ratio transformation of major-element data. J Earth Syst Sci 115, 485–528 (2006). https://doi.org/10.1007/BF02702907

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02702907

Keywords

Navigation