Skip to main content
Log in

Preparation of chitosan nanoparticles as carrier for immobilized enzyme

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This work investigated the preparation of chitosan nanoparticles used as carriers for immobilized enzyme. The morphologic characterization of chitosan nanoparticles was evaluated by scanning electron microscope. The various preparation methods of chitosan nanoparticles were discussed and chosen. The effect of factors such as molecular weight of chitosan, chitosan concentration, TPP concentration, and solution pH on the size of chitosan nanoparticles was studied. Based on these results, response surface methodology was emploved. The results showed that solution pH, TPP concentration, and chitosan concentration significantly affected the size of chitosan nanoparticles. The adequacy of the predictive model equation for predicting the magnitude orders of the size of chitosan nanoparticles was verified effectively by the validation data. Immobilization conditions were investigated as well. The minimum particles size was about 42±5 nm under the optimized conditions. The optimal conditions of immobilization were as follow: one milligram of neutral proteinase was immobilized on chitosan nanoparticles for about 15 min at 40°C. Under the optimized conditions, the enzyme activity yield was 84.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Juang, R. S., Wu, F. C., and Tseng, R. L. (2001), Bioresour. Technol. 80, 187–193.

    Article  CAS  Google Scholar 

  2. Monteiro, O. A., Jr. and Airoldi, C. (1999), Int. J. Biol. Macromol. 26, 119–128.

    Article  CAS  Google Scholar 

  3. Denkbas, E. B., Kilicay, E., Birlikseven, C., and Ozturk, E. (2002), React. Funct. Polym. 50, 225–232.

    Article  CAS  Google Scholar 

  4. Selmer-Olsen, E., Ratnaweera, H. C., and Pehrson, R. (1996), Water Sci. Technol. 34, 33–40.

    Article  CAS  Google Scholar 

  5. Kucera, J. (2004), J. Chromatogr. B 808, 69–73.

    Article  CAS  Google Scholar 

  6. Chiou, S. H., and Wu, W. T. (2004), Biomaterials 25 197–204.

    Article  CAS  Google Scholar 

  7. Mi, F. L., Kuan, C. Y., Shyu, S. S., Lee, S. T., and Chang, S. F. (2000) Carbohydr. Polym. 41, 389–396.

    Article  CAS  Google Scholar 

  8. Berthold, A., Cremer, K., and Kreuter, J. (1996), J. Control. Release 39, 17–25.

    Article  CAS  Google Scholar 

  9. Tian, X. X., and Groves, M. J. (1999), J. Pharm. Pharmacol. 51, 151–157.

    Article  CAS  Google Scholar 

  10. Cui, Z., and Mumper, R. J. (2001), J. Control. Release 75, 409–419.

    Article  CAS  Google Scholar 

  11. Ohya, Y., Shiratani, M., Kobayashi, H., et al. (1994) Pure Appl. Chem. 31, 629–642.

    Google Scholar 

  12. Bodmeier, R., Chen, H. G., and Paeratakul, O. (1989), Pharm. Res. 6, 413–417

    Article  CAS  Google Scholar 

  13. Janes, K. A., Fresneau, M. P., Marazuela, A., et al. (2001), Control. Release 73, 255–267.

    Article  CAS  Google Scholar 

  14. Calvo, P., Remunan Lopez, C., Vila-Jato, J. L., et al. (1997), J. Appl. Polym. Sci. 63, 125–132.

    Article  CAS  Google Scholar 

  15. De Campos, A. M., Sanchez, A., and Alonso, M. J. (2001), Int. J. Pharm. 224, 159–168.

    Article  Google Scholar 

  16. Tokumisu, H., Hiratsuka, J., Sakurai, Y., et al. (2000), Cancer Lett. 150, 177–182.

    Article  Google Scholar 

  17. Shikata, F., Tokumitsu, H., Ichikawa, H., et al. (2002), Eur. J. Pharm. Biopharm. 53, 57–63.

    Article  CAS  Google Scholar 

  18. Fujimoto, M., Kunniaka, A., and Yoshino, H. (1974), Agric. Biol. Chem. 38, 777–783.

    CAS  Google Scholar 

  19. Montgomery, D. C. (1991), Design and Analysis of Experiments, 3rd ed., John Wiley & Sons, New York.

    Google Scholar 

  20. Leong, Y. S., and Candau, F. (1982), J. Phys. Chem. 86, 2269–2271.

    Article  CAS  Google Scholar 

  21. Polk, A., Amsden, B., Yao, K. D., Peng, T., and Goosen, M. F. A. (1994), J. Pharm. Sci. 83, 178–185.

    Article  CAS  Google Scholar 

  22. Liu, L. S., Liu, S. Q., Ng, S. Y., Froix, M., Ohno, T., and Heller, J. (1997), J. Control. Release 43, 65–74.

    Article  CAS  Google Scholar 

  23. Kawashima, Y., Handa, T., Takenaka, H., Lin, S. Y., and Ando, Y. (1985), Pharm. Sci. 74, 264–268.

    Article  CAS  Google Scholar 

  24. Kawashima, Y., Handa, T., Kasai, A., Takenaka, H., and Lin, S. Y. (1985), Mem. Pharm. Bull. 33, 2469–2474.

    CAS  Google Scholar 

  25. Gan, Q., Wang, T., Colette, C., et al. (2005), Colloids Surf. B: Biointerfaces 44, 65–73.

    Article  CAS  Google Scholar 

  26. Vandenberg, G. W., Drolet, C., Scott, S. L., and Noüe, J. D. (2001), J. Control. Release 77, 297–307.

    Article  CAS  Google Scholar 

  27. Kumar, M. N. V. R. (2000), J. Pharm. Pharm. Sci. 3, 234–258.

    Google Scholar 

  28. Xu, Y., and Du, Y. (2003), Int. J. Pharm. 250, 215–226.

    Article  CAS  Google Scholar 

  29. Janes, K. A., Calvo, P., and Aloso, M. J. (2001), Adv. Drug Deliv. Rev. 47, 83–97.

    Article  CAS  Google Scholar 

  30. Li, T. M., Xu, X. L., Li, W., et al., (1998), Pharm. Biotechnol. 5, 214–218.

    CAS  Google Scholar 

  31. Chiou, S. H., and Wu, W. T. (2004), Biomaterials 25, 197–204.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Xing Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, ZX., Qian, JQ. & Shi, LE. Preparation of chitosan nanoparticles as carrier for immobilized enzyme. Appl Biochem Biotechnol 136, 77–96 (2007). https://doi.org/10.1007/BF02685940

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02685940

Index Entries

Navigation