Skip to main content
Log in

Rotational and helical surface approximation for reverse engineering

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Given a surface in 3-space or scattered points from a surface, we investigate the problem of deciding whether the data may be fitted well by a cylindrical surface, a surface of revolution or a helical surface. Furthermore, we show how to compute an approximating surface and put special emphasis to basic shapes used in computer aided design. The algorithms apply methods of line geometry to the set of surface normals in combination with techniques of numerical approximation. The presented results possess applications in reverse engineering and computer aided manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, H. Y., Pottmann, H.: Approximation by ruled surfaces. J. Comput. Appl. Math. (submitted).

  2. Eckhardt, U., Maderlechner, G.: Thinning of binary images. Hamburger Beiträge zur Angewandten Mathematik, Reihe B, Bericht 11, 1989.

  3. Eckhardt, U., Maderlechner, G.: Invariant thinning. Int. J. Pattern Rec. Art. Intell.7, 1115–1144 (1993).

    Article  Google Scholar 

  4. Elber, G., Kim, M.-S.: Geometric shape recognition of freeform curves and surfaces. Grap. Models Image Proc.60 (to appear).

  5. Elsässer, G., Hoschek, J.: Approximation of digitized points by surfaces of revolution. Comput. Graphics20, 85–94 (1996).

    Article  Google Scholar 

  6. Gander, W., Golub, G.H., Strebel, R.: Least-squares fitting of circles and ellipses. BIT34, 558–578 (1994).

    Article  MATH  Google Scholar 

  7. Hoschek, J., Lasser, D.: Fundamentals of computer aided geometric design. Wellesley Massachusetts: A. K. Peters, 1993.

    MATH  Google Scholar 

  8. Klein, F.: Die allgemeine lineare Transformation der Linienkoordinaten. In: Gesammelte math. Abhandlungen I. Berlin: Springer, 1921.

    Google Scholar 

  9. Kraus, K.: Photogrammetrie, Vol. 2. Bonn: Dümmler, 1996.

    Google Scholar 

  10. Leonardis, A., Gupta, A., Bajcsy, R.: Segmentation of range images as the search for parametric geometric models. Int. J. Comput. Vision14, 253–277 (1995).

    Article  Google Scholar 

  11. Lukács, G., Marshall, A. D., Martin, R. R.: Geometric least-squares fitting of spheres, cylinders, cones and tori. Preprint, University of Wales, Cardiff, 1997.

    Google Scholar 

  12. Martin, R. R., Stroud, I. A., Marshall, A. D.: Data reduction for reverse engineering. In: Goodman, T. N. T. (ed.) Mathematics of Surfaces VII, pp. 85–100. Information Geometers, 1997.

  13. Meer, P., Mintz, D., Rosenfeld, A., Kim, D. Y.: Robust regression methods for computer vision: A review. Int. J. Comput. Vision6, 59–70 (1991).

    Article  Google Scholar 

  14. Müller, H. R.: Kinematik. Berlin: Walter de Gruyter, 1963.

    MATH  Google Scholar 

  15. Piegl, L., Tiller, W.: The NURBS book. Berlin Heidelberg New York Tokyo: Springer 1995.

    MATH  Google Scholar 

  16. Pottmann, H., Chen, H. Y., Lee, I. K.: Approximation by profile surfaces, Preprint, 1998.

  17. Randrup, T.: Approximation by cylinder surfaces. Comput. Aided Des. (submitted).

  18. Rousseeuw, P. J., Leroy, A. M.: Robust regression and outlier detection. New York: Wiley, 1987.

    MATH  Google Scholar 

  19. Rosenfeld, A.: Digital topology. Am. Math. Monthly86, 621–630 (1979).

    Article  MATH  Google Scholar 

  20. Sapidis, N. S., Besl, P. J.: Direct construction of polynomial surfaces from dense range images through region growing. ACM Trans. Graphics14, 171–200 (1995).

    Article  Google Scholar 

  21. Varady, T., Martin, R. R., Cox J.: Reverse engineering of geometric models — an introduction. Comput. Aided Des.29, 255–268 (1997).

    Article  Google Scholar 

  22. Wunderlich, W.: Zyklische Strahlkomplexe und geodätische Linien auf euklidischen und nichteuklidischen Dreh- und Schraubflächen. Math. Z.85, 407–418 (1964).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pottmann, H., Randrup, T. Rotational and helical surface approximation for reverse engineering. Computing 60, 307–322 (1998). https://doi.org/10.1007/BF02684378

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684378

AMS Subject Classifications

Key words

Navigation