Skip to main content
Log in

The contraction method for recursive algorithms

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In this paper we give an introduction to the analysis of algorithms by the contraction method. By means of this method several interesting classes of recursions can be analyzed as particular cases of our general framework. We introduce the main steps of this technique which is based on contraction properties of the algorithm with respect to suitable probability metrics. Typically the limiting distribution is characterized as a fixed point of a limiting operator on the class of probability distributions. We explain this method in the context of several “divide and conquer” algorithms. In the second part of the paper we introduce a new quite general model for branching dynamical systems and explain that the contraction method can be applied in this model. This model includes many classical examples of random trees and gives a general frame for further applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • M. Arbeiter, Random recursive construction of self-similar fractal measures. The noncompact case,Probab. Theory Related Fields,88 (1991), 497–520.

    Article  MATH  MathSciNet  Google Scholar 

  • K.B. Athreya and P. Ney,Branching Processes, Die Grundlehren der mathematischen Wissenschaften, Band 196, Springer-Verlag, New York, 1972, Chapter XI, p. 287.

    MATH  Google Scholar 

  • S. Asmussen and H. Hering,Branching Processes, Progress in Probability and Statistics, Vol. 3, Birkhäuser, Boston, 1983.

    MATH  Google Scholar 

  • P.J. Bickel and D.A. Freedman, Some asymptotic theory for the bootstrap,Ann. Statist.,9 (1981), 1196–1217.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Bougerol and N. Picard, Stationarity of GARCH processes and of some nonnegative time series,J. Econometrics,52 (1992), 125–127.

    Article  MathSciNet  Google Scholar 

  • L. Breiman,Probability, Addison-Wesley, Reading, MA, 1968.

    MATH  Google Scholar 

  • V. Bruhn, Eine Methode zur asymptotischen Behandlung einer Klasse von Rekursionsgleichungen mit einer Anwendung in der stochastischen Analyse des Quicksort-Algorithmus, Dissertation, Mathematisches Seminar der Universität zu Kiel, 1996.

  • R. Burton and U. Rösler, AnL 2 convergence theorem for random affine mappings,J. Appl. Probab.,32 (1995), 183–192.

    Article  MATH  MathSciNet  Google Scholar 

  • W.M. Chen, H.K. Hwang, and G.H. Chen, The cost distribution of queue-mergesort, optimal mergesorts, and power-of-two rules, Preprint, 1998.

  • M. Cramer, Stochastische Analyse rekursiver Algorithmen mit idealen Metriken, Dissertation Freiburg, 1995.

  • M. Cramer, A note concerning the limit distribution of quicksort algorithm,Theoret. Inform. Appl.,30 (1996), 195–207.

    MATH  MathSciNet  Google Scholar 

  • M. Cramer, Convergence of a branching type recursion with non-stationary immigration,Metrika,46 (1997a), 187–211.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Cramer, Stochastic analysis of “simultaneous merge-sort,”Adv. Appl. Probab.,29 (1997b), 669–694.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Cramer, Stochastic analysis of the Merge-Sort algorithm,Random Struct. Algorithms,11 (1997c), 81–96.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Cramer and L. Rüschendorf, Analysis of recursive algorithms by the contraction method,Proc. Athens Conference on Applied Probability and Time Series Analysis, Athens, Greece, March 22–25, 1995, Lecture Notes in Statistics, Vol. 114, Springer-Verlag, New York, 1996a, Vol. I, pp. 18–33.

    Google Scholar 

  • M. Cramer and L. Rüschendorf, Convergence of a branching type recursion,Ann. Inst. H. Poincaré Probab. Statist.,32 (1996b), 725–741.

    MATH  Google Scholar 

  • M. Cramer and L. Rüschendorf, Convergence of two-dimensional branching recursions, Preprint, 1998. To appear inJ. Comput. Appl. Math.

  • G. Dall’Aglio, Sugli estremi dei momenti delle funzioni di ripartizione doppia,Ann. Scuola Norm Sup. Pisa Cl. Sci. (3)10 (1956), 35–74.

    MATH  MathSciNet  Google Scholar 

  • L. Devroye, A note on the expected height of binary search trees,J. Assoc. Comput. Mach.,33 (1986), 489–498.

    MATH  MathSciNet  Google Scholar 

  • L. Devroye, Branching processes in the analysis of the heights of trees,Acta Inform.,24 (1987), 277–298.

    Article  MATH  MathSciNet  Google Scholar 

  • L. Devroye, Universal limit laws for depth in random trees, Preprint, 1998.

  • L. Devroye and L. Laforest, An analysis of randomd-dimensional quad trees,SIAM J. Comput.,19 (1990), 821–832.

    Article  MATH  MathSciNet  Google Scholar 

  • R.P. Dobrow and J.A. Fill, Total path length for random recursive trees, Preprint, 1998.

  • D. Dubischar, The representation of Markov processes by random dynamical systems, Report 393, Universität Bremen, 1997. http://www.math.uni-bremen.de/rds/preprints.

  • D. Dufresne, The distribution of a perpetuity, with applications to risk theory and pension funding,Scand. Actuar. J.,1/2 (1990), 39–79.

    MathSciNet  Google Scholar 

  • R. Durrett and M. Liggett, Fixed points of the smoothing transformation,Z. Wahrsch. Verw. Gebiete,64 (1983), 275–301.

    Article  MATH  MathSciNet  Google Scholar 

  • W. Eddy and M. Schervish, How many comparisons does quicksort use?,J. Algorithms,19 (1995), 402–431.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Embrechts and Ch. Goldie, Perpetuities and random equations, inAsymptotic Statistics (Prague, 1993), Contributions to Statistics, Physica, Heidelberg, 1994, pp. 75–86.

    Google Scholar 

  • M.H. van Emden, Increasing the efficiency of quicksort,Comm. ACM,13 (1970), 563–567.

    Article  MATH  Google Scholar 

  • P. Feldman, S.T. Rachev, and L. Rüschendorf, Limit theorems for recursive algorithms,J. Comput. Appl. Math.,56 (1995), 169–182.

    Article  Google Scholar 

  • P. Feldman, S.T. Rachev, and L. Rüschendorf, Limiting distribution of the collision resolution interval,Statist. Neerlandica,51 (1997), 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  • R.A. Finkel and J.L. Bently, Quad trees, a data structure for retrieval on composite keys,Acta Inform.,4 (1974), 1–9.

    Article  MATH  Google Scholar 

  • P. Flajolet and M. Golin, Mellin transforms and asymptotics: the mergesort recurrence,Acta Inform.,31 (1994), 673–696.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Flajolet and T. Lafforgue, Search costs in quadtrees and singularity pertubation asymptotics,Discrete Computat. Geom.,12 (1994), 151–175.

    Article  MathSciNet  Google Scholar 

  • P. Flajolet, G. Gonnet, C. Puech, and J.M. Robson, Analytic variations on quadtrees,Algorithmica,10 (1993), 473–500.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Flajolet, G. Labelle, L. Laforest, and B. Salvy, Hypergeometrics and the cost structure of quadtrees,Random Struct. Algorithms,7 (1995), 117–144.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Fürstenberg and H. Kesten, Products of random matrices,Ann. Math. Statist.,31 (1960), 457–469.

    Article  MathSciNet  Google Scholar 

  • B.W. Gnedenko and A.N. Kolmogorov,Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Reading, MA, 1954.

    MATH  Google Scholar 

  • M. Golin and R. Sedgewick, Queue-mergesort,Inform. Process. Lett.,48 (1993), 253–259.

    Article  MATH  Google Scholar 

  • S. Graf, Statistically self-similar fractals,Probab. Theory Related Fields,74 (1987), 357–392.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Grübel and U. Rösler, Asymptotic distribution theory for Hoare’s selection algorithm,Adv. in Appl. Probab.,28 (1996), 252–269.

    Article  MATH  MathSciNet  Google Scholar 

  • Y. Guivarch, Sur une extension de la notion de loi semi-stable.Ann. Inst. H. Poincaré,26 (1990), 261–286.

    MathSciNet  Google Scholar 

  • P. Hennequin, Combinatorial analysis of quicksort algoithm,Theoret. Inform. Appl.,23 (1989), 317–333.

    MATH  MathSciNet  Google Scholar 

  • C.A.R. Hoare, Algorithm 63, Partition; Algorithm 64, Quicksort; Algorithm 65, Find,Comm. ACM,4 (1961), 321–322.

    Article  Google Scholar 

  • C.A.R. Hoare, Quicksort,Comput. J.,5 (1962), 10–15.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Hofri,Probabilistic Analysis of Algorithms. On Computing Methodologies for Computer Algorithms Performance Evaluation, Springer-Verlag, New York, 1987.

    MATH  Google Scholar 

  • I. Hutchinson and L. Rüschendorf, Random fractal measures and probability metrics, Preprint, 1998.

  • P. Jagers, Galton-Watson processes in varying environments,J. Appl. Probab.,11 (1974), 174–178.

    Article  MATH  MathSciNet  Google Scholar 

  • J.P. Kahane and J. Peyrière, Sur certaines martingales de Benoit Mandelbrot.Adv. in Math.,22 (1976), 131–145.

    Article  MATH  Google Scholar 

  • H. Kesten, Random difference equations and renewal theory for products of random matrices,Acta Math.,131 (1973), 207–248.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Kirschenhofer and H. Prodinger, Comparisons in Hoare’s Find algorithm,Combin., Probab. Comput.,7 (1998), 111–120.

    Article  MATH  MathSciNet  Google Scholar 

  • Ch. Knessl and W. Szpankowski, Quicksort algorithm again revisited, Preprint, 1998.

  • D.E. Knuth,The Art of Computer Programming, Fundamental Algorithms, 2nd edn., Vol. 1, Addison-Wesley, Reading, MA, 1973.

    Google Scholar 

  • B Kodaj and T.F. Móri, On the number of comparisons in Hoare’s algorithm “Find,”Studia Sci. Math. Hungar.,33 (1997), 185–207.

    MATH  MathSciNet  Google Scholar 

  • J. Lent and H.M. Mahmoud, Average-case analysis of multiple Quickselect: an algorithm for finding order statistics,Statist. Probab. Lett.,28 (1996), 299–310.

    Article  MATH  MathSciNet  Google Scholar 

  • G. Letac, A contraction principle for certain Markov chains and its applications, inRandom Matrices and Their Applications (Brunswick, Maine, 1984), Comtemporary Mathematics Vol. 50, American Mathematics Society, Providence, RI, 1986, pp. 263–273.

    Google Scholar 

  • H. Mahmoud, Limiting distributions for path lengths in recursive trees,Probab. Engrg. Inform. Sci.,5 (1991), 53–59.

    Article  MATH  MathSciNet  Google Scholar 

  • H.M. Mahmoud,Evolution of Random Search Trees, Wiley, New York, 1992.

    MATH  Google Scholar 

  • H.M. Mahmoud, Sorting: a distribution theory, Preprint, 1998.

  • H.M. Mahmoud, R. Modarres, and R.T. Smythe, Analysis of Quickselect: an algorithm for order statistics,RAIRO Inform. Theor. Appl.,29 (1995), 255–276.

    MATH  MathSciNet  Google Scholar 

  • B. Mandelbrot, Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire,C. R. Acad. Sci. Paris,278 (1974), 289–292.

    MATH  MathSciNet  Google Scholar 

  • C.J. McDiarmid and R. Hayward, Large deviation for quicksort,J. Algorithms,21 (1996), 476–507.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Neininger and L. Rüschendorf, On the internal path length ofd-dimensional quad trees,Rand. Structure Algorithm,11 (1999), 25–41.

    Article  Google Scholar 

  • W. Panny and H. Prodinger, Bottom-up mergesort—a detailed analysis,Algorithmica,14 (1995), 340–354.

    Article  MATH  MathSciNet  Google Scholar 

  • V. Paulsen, The moments of Find,J. Appl. Probab.,34 (1997), 1079–1082.

    Article  MATH  MathSciNet  Google Scholar 

  • S.T. Rachev,Probability Metrics and the Stability of Stochastic Models, Wiley, New York, 1991.

    MATH  Google Scholar 

  • S.T. Rachev and L. Rüschendorf, Propagation of chaos and contraction of stochastic mappings,Siberian Adv. in Math.,1 (1994a), 114–150.

    Google Scholar 

  • S.T. Rachev and L. Rüschendorf, On the rate of convergenc in the CLT with respect to the Kantorovich metric, inProceedings of the 9th International Conference on Probability in Banach Spaces (J. Hoffmann-Joergensen, J. Kuelbs, and M. Marcus, eds.), held at Sandbjerg, Denmark, August 16–21, 1993, Progress in Probability, Vol. 35, Birkhäuser, Boston, MA, 1994b, pp. 193–208.

    Google Scholar 

  • S.T. Rachev and L. Rüschendorf, Probability metrics and recursive algorithms,Adv. in Appl. Probab.,27 (1995), 770–799.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Régnier, A limiting distribution for quicksort,RAIRO Theor. Inform. Appl.,23 (1989), 335–343.

    MATH  Google Scholar 

  • W.T. Rhee and M. Talagrand, A sharp deviation inequality for the stochastic traveling salesman problem,Ann. Probab.,17 (1989), 1–8.

    Article  MATH  MathSciNet  Google Scholar 

  • U. Rösler, A limit theorem for “Quicksort”,RAIRO Theoret. Inform. and Appl.,25 (1991), 85–100.

    MATH  Google Scholar 

  • U. Rösler, A fixed point theorem for distributions,Stochastic Process. Appl.,37 (1992), 195–214.

    Article  Google Scholar 

  • U. Rösler, The weighted branching process, inDynamics of Complex and Irregular Systems (Bielefeld, 1991), Bielefeld Encounters in Mathematics and Physics, Vol. VIII, World Science, River Edge, NJ, 1993, pp. 154–165.

    Google Scholar 

  • U. Rösler, A fixed point equation for distributions,Berichtsreihe des Mathematischen Seminars Kiel, Christian-Albrechts-Universität zu Kiel, 1998a. http://www.numerik.uni-kiel.de/reports/1998/98-7.html.

  • U. Rösler, On the analysis of stochastic divide and conquer algorithms,Berichtsreihe des Mathematischen Seminars Kiel, Christian-Albrechts-Universität zu Kiel, 1998b. http://www.numerik.uni-kiel.de/reports/1998.

  • J. Schimmler, Stochastische Analyse des Mergesort-Algorithmus, Diplomarbeit, Kiel, 1997.

    Google Scholar 

  • R. Sedgewick, Quicksort, Stanford Computer Science Report STAN-CS-75-492, Ph.d. thesis, 1975. Also published by Garland, New York, 1980.

  • R.T. Smythe and H. Mahmoud, A survey of recursive trees,Theory Probab. Math. Statist.,51 (1995), 1–27.

    MathSciNet  Google Scholar 

  • K.H. Tan and P. Hadjicostas, Some properties of a limiting distribution of quicksort,Statist. Probab. Lett.,25 (1995), 87–94.

    Article  MATH  MathSciNet  Google Scholar 

  • V.M. Zolotarev,Modern Theory of Summation of Random Variables. VSP, Utrecht, 1997.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Prodinger and W. Szpankowski.

Online publication September 22, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rösler, U., Rüschendorf, L. The contraction method for recursive algorithms. Algorithmica 29, 3–33 (2001). https://doi.org/10.1007/BF02679611

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02679611

Key Words

Navigation