Skip to main content
Log in

Luminescence of zinc selenide obtained by the method of self-propagating high-temperature synthesis

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

We investigate the photo- and roentgenoluminescence of ZnSe polycrystals obtained by the method of a self-propagating high-temperature synthesis (SHS). We establish an identity between the spectra of stationary luminescence of the polycrystals investigated and ZnSe single crystals. We show that the long-wave radiation of SHS crystals is due in the main to the presence of uncontrolled oxygen impurities in the crystals as well as to intrinsic defects that form donor-acceptor centers of self-activated luminescence. Investigations of roentgenoluminescence in the mode of its pulse excitation make it possible to isolate short-lived (550, 495, and 452 nm) and long-lived (580 and 630 nm) components of the radiation spectrum. The transformation of the corresponding spectra on a change in the temperature of the crystals is shown. The results demonstrate the possibility of using zinc selenide polycrystals produced by the SHS method in applied luminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.D. Nedeoglo and A. V. Simashkevich, Electrical and Luminescence Properties of Zinc Selenide [in Russian], Kishinev (1984).

  2. N. N. Korneva, Yu. F. Vaksman, and V. V. Serdyuk, Zh. Prikl. Spektrosk.,32, 294–298 (1980)

    Google Scholar 

  3. V. V. Serdyuk, N. N. Korneva, and Yu. F. Vaksman, Phys. Stat. Sol. (a),91, 173–183 (1985).

    Article  Google Scholar 

  4. A. G. Merzhanov, in: Self-Propagating High-Temperature Synthesis. Physical Chemistry. Present-day Problems [in Russian], Moscow (1983), pp. 6–45.

  5. S. V. Kozitskii, D. D. Polishchuk, V. P. Pisarskii, et al., Izv. Akad. Nauk SSSR, Neorg. Mater.,27, 2516–2519 (1991).

    Google Scholar 

  6. I. A. Naser, Yu. F. Vaksman, and V. V. Serdyuk, Zh. Prikl. Spektrosk.42, 659–662 (1985).

    Google Scholar 

  7. Yu. F. Vaksman, Fiz. Tekh. Poluprovodn.,29, 346–348 (1995).

    Google Scholar 

  8. S. V. Zubrits'kii and S. V. Kozits'kii, Ukr. Fizich. Zh.,37, 1665–1669 (1992).

    Google Scholar 

  9. H. Nelkovski and O. Phutsenventer, J. Luminesc.,17, 419–423 (1978).

    Article  Google Scholar 

  10. A. Katsuhiro, M. Takao, and M. Yoshifumi, Phys. Rev. B,39, 3138–3144 (1989).

    Article  Google Scholar 

  11. Yu. F. Vaksman, N. V. Malushin, V. M. Skobeeva, M. S. Aligera, and V. V. Serdyuk, Zh. Prikl Spektrosk.,21, 342–344 (1974).

    Google Scholar 

  12. A. L. Gurskii, E. V. Lutsenko, N. K. Morozova, and G. P. Yablonskii, Fiz. Tvyord. Tela,34, 3530–3536 (1992).

    Google Scholar 

  13. S. V. Kozitskii, Zh. Prikl. Spektrosk.,63, 124–128 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 3, pp. 333–337, May–June, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozitskii, S.V., Vaksman, Y.F. Luminescence of zinc selenide obtained by the method of self-propagating high-temperature synthesis. J Appl Spectrosc 64, 345–349 (1997). https://doi.org/10.1007/BF02675096

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02675096

Key words

Navigation