Skip to main content
Log in

Pollen hydration status at dispersal: cytophysiological features and strategies

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The aim of this paper is to draw attention to partially hydrated pollen, namely, pollen grains having a high water content (>30%); this type of pollen is more frequent than previously thought. Various cyto-physiological strategies are used to retain water during exposure and dispersal such as cytoplasm carbohydrates; in the absence of such strategies, fast pollination must be ensured, because uncontrolled loss of water leads to pollen death. On the other hand, a state of partial hydration allows a fast tube emission (even within 3–5 min). Several methods for determining the hydration status of pollen at anthesis are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnabás B, Rajki E (1981) Fertility of deep-frozen maize(Zea mays) L. pollen. Ann Bot 48: 861–864

    Google Scholar 

  • Bassani M, Pacini E, Franchi GG (1994) Humidity stress responses in pollen of anemophilous and entomophilous species. Grana 33: 146–150

    Google Scholar 

  • Blackmore S, Barnes SH (1986) Harmomegathic mechanisms in pollen grains. In: Blackmore S, Ferguson IK (eds) Pollen and spores: form and function. Academic Press, London, pp 137–149

    Google Scholar 

  • Bonner LJ, Dickinson HG (1989) Anther dehiscence inLycopersi-con esculentum Mill. I: structural aspects. New Phytol 113: 97–115

    Article  Google Scholar 

  • Brewbaker JL, Kwack BH (1964) The calcium ion and substances influencing pollen growth. In: Linskens HF (ed) Pollen physiology and fertilization. North-Holland, Amsterdam, pp 143–151

    Google Scholar 

  • — Majamder SK (1961) Cultural studies on the pollen popula-tion effect and the self-incompatibility inhibition. Am J Bot 48: 457–464

    Article  CAS  Google Scholar 

  • Cresti M, Pacini E, Ciampolini F, Sarfatti G (1977) Germination and pollen tube development in vitro ofLycopersicon perüvianum pollen: ultrastructural features. Planta 136: 239–247

    Article  Google Scholar 

  • Dickinson HG, Lawson J (1975) Pollen tube growth in the stigma ofOenothera organensis following compatible and incompatible intraspecific pollination. Proc R Soc Lond B 188: 327–344

    Google Scholar 

  • Erdtman G (1952) Pollen morphology and plant taxonomy: angio-sperms. Almqvist & Wiksell, Stockholm

    Google Scholar 

  • Franchi GG, Bellani L, Nepi M, Pacini E (1996) Types of carbohy-drate reserves in pollen: localization, systematic distribution and ecophysiological significance. Flora 191: 143–159

    Google Scholar 

  • Gay G, Kerhoas C, Dumas C (1987) Quality of stress-sensitiveCucurbita pepo L. pollen. Planta 171: 82–87

    Article  Google Scholar 

  • Heslop-Harrison J (1979) An interpretation of the hydrodynamics of pollen. Am J Bot 66: 737–743

    Article  Google Scholar 

  • ——(1987) Pollen germination and pollen tube growth. Int Rev Cytol 107: 1–78

    Google Scholar 

  • ——Heslop-Harrison Y (1982) The growth of the grass pollen tube 1: characteristics of the polysaccharide particles (P-particles) asso-ciated with apical growth. Protoplasma 112: 71–80

    Article  Google Scholar 

  • ——(1985) Germination of stress-tolerantEucalyptus pollen. J Cell Sci 73: 125–137

    Google Scholar 

  • ——(1992) Intracellular motility, the actin cytoskeleton and ger-minability in the pollen of wheat(Triticum aestivum) L. Sex Plant Reprod 5: 247–255

    Article  Google Scholar 

  • —— Shivanna KR (1984) Evaluation of pollen quality and a further appraisal of the fluorochromatic (FCR) test procedure: Theor Appl Genet 67: 367–375

    Article  Google Scholar 

  • —— Heslop-Harrison JS (1997) Motility in ungerminated grass pollen: association of myosin with polysaccharide-containing wall-precursors bodies (P-particles). Sex Plant Reprod 10: 65–66

    Article  Google Scholar 

  • Heslop-Harrison Y (2000) Control gates and micro-ecology: the pollen-stigma interaction in perspective. Ann Bot 85 Suppl A: 5–13

    Article  Google Scholar 

  • Hesse M (1978) Zweierlei Formen der Pollenverkittung bei den Onagraceae. Naturkundl Jahrb Stadt Linz 23: 9–16

    Google Scholar 

  • Hoekstra FA (1972) Ademhaling ew vitaliteit van bi en trinukleaat pollen. Ing thesis, Agricultural University of Wageningen, Wageningen, the Netherlands

    Google Scholar 

  • — (1992) Stress effects on the male gametophyte. In: Cresti M,Tiezzi A (eds) Sexual plant reproduction. Springer, Berlin Heidelberg New York Tokyo, pp 193–201

    Google Scholar 

  • — van Roekel T (1988) Desiccation tolerance ofPapaver dubium L. pollen during its development in the anther: possible role of phospholipid composition and sucrose content. Plant Physiol 88: 626–632

    Article  PubMed  CAS  Google Scholar 

  • Keijzer CJ (1987) The process of anther dehiscence and pollen dispersal 1: the opening mechanism of longitudinally dehiscing anther. New Phytol 105: 487–498

    Article  Google Scholar 

  • — (1999) Mechanisms of angiosperm anther dehiscence: a historical review. In: Clément C, Pacini E, Audran J-C (eds) Anther and pollen: from biology to biotechnology. Springer, Berlin Heidelberg New York Tokyo, pp 54–67

    Google Scholar 

  • Kremp GOW (1965) Morphologic encyclopedia of palynology. The University of Arizona Press, Tucson, Ariz

    Google Scholar 

  • Kress WJ (1986) Exineless pollen structure and pollination systems of tropicalHeliconia (Heliconiaceae). In: Blackmore S, Ferguson IK (eds) Pollen and spores: form and function. Academic Press, London, pp 329–345

    Google Scholar 

  • — Stone DE (1982) Nature of the sporoderm in monocotyledons, with special reference to the pollen grains ofCanna andHeliconia. Grana 21: 129–148

    Article  Google Scholar 

  • Lansac AR, Sullivan CY, Johnson BE, Lee KW (1994) Viability and germination of the pollen of sorghum [Sorghum bicolor (L). Moench]. Ann Bot 74: 27–33

    Article  CAS  PubMed  Google Scholar 

  • Lisci M,Tanda C, Pacini E (1994) Pollination ecophysiology ofMer-curialis annua L. (Euphorbiaceae), an anemophylous species flowering all year round. Ann Bot 74:125–135

    Article  Google Scholar 

  • Nepi M, Pacini E (1993) Pollination, pollen viability and pistil recep-tivity inCucurbita pepo. Ann Bot 72: 526–536

    Article  Google Scholar 

  • — (1999) What may be the significance of polysiphony inLavatera arborea? In: Clément C, Pacini E, Audran J-C (eds.) Anther and pollen: from biology to biotechnology. Springer, Berlin Heidelberg New York Tokyo, pp 13–20

    Google Scholar 

  • — Ciampolini F, Pacini E (1995) Development ofCucurbita pepo pollen: ultrastructure and histochemistry of the sporoderm. Can J Bot 73:1046–1057

    Google Scholar 

  • Niesenbaum RA, Schueller SK (1997) Effects of pollen competitive environment on pollen performance inMirabilis jalapa (Nyctag-inaceae). Sex Plant Reprod 10:101–106

    Article  Google Scholar 

  • O’Brien TP, McCully ME (1981) The study of plant structure: principles and selected methods. Termarcarphi Pty, Melbourne

    Google Scholar 

  • Ottaviano E, Mulcahy DL (1989) Genetics of angiosperm pollen. Adv Genet 26:1–64

    Article  Google Scholar 

  • Owens SJ (1992) Pollination and fertilization in higher plants. In: Marshall C, Grace J (eds) Fruit and seed production: aspects of development, environmental physiology and ecology. Cambridge University Press, Cambridge, pp 33–55

    Google Scholar 

  • Pacini E (1990) Harmomegathic characters of pteridophyta spores and spermatophyta pollen. Plant Syst Evol Suppl 5: 53–59

    Google Scholar 

  • — (1996) Types and meaning of pollen carbohydrate reserves. Sex Plant Reprod 9: 362–366

    Article  CAS  Google Scholar 

  • — Franchi GG (1999) Types of pollen dispersal units and pollen competition. In: Clément C, Pacini E, Audran J-C (eds) Anther and pollen: from biology to biotechnology. Springer, Berlin Heidelberg New York Tokyo, pp 1–9

    Google Scholar 

  • —— Lisci M, Nepi M (1997) Pollen viability related to type of pollination in six angiosperm species. Ann Bot 80: 83–87

    Article  Google Scholar 

  • Pyne WW (1981) Structure and function in angiosperm pollen wall evolution. Rev Paleobot Palinol 35: 39–59

    Article  Google Scholar 

  • Speranza A, Calzoni GL, Pacini E (1997) Occurrence of mono-or disaccharides and polysaccharide reserves in mature pollen grains. Sex Plant Reprod 10:110–115

    Article  CAS  Google Scholar 

  • Stanley RG, Linskens HF (1974) Pollen: biology, biochemistry, management. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wodehouse RP (1935) Pollen grains. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Padni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nepi, M., Franchi, G.G. & Padni, E. Pollen hydration status at dispersal: cytophysiological features and strategies. Protoplasma 216, 171–180 (2001). https://doi.org/10.1007/BF02673869

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02673869

Keywords

Navigation