Skip to main content
Log in

The influence of grain size on the erosion rate of metals

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The objective of this work was to understand the influence of grain size on solid impingement erosion behavior characterized by deformation at high strain rates and large strains. Experiments were carried out at a velocity of 40 m/s, impact angle of 90 deg with 300 to 450 μm steel shot as erodent on iron, copper, and titanium with varying grain sizes. The results indicate that the erosion rate is independent of grain size in iron and copper while it is apparently grain size dependent in titanium. The results are rationalized in terms of the negligible contribution of the Hall-Petch component to the flow stress at large strains in the case of copper and iron. The decreasing erosion rate in titanium with increasing grain size was due to the increased interstitial content picked up during thermal treatment and consequent increase in strain hardening and strain rate hardening and not due to increased grain sizeper se. Adiabatic shear bands were observed in coarse-grained iron under actual erosion conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Tabakoff and A. Hamed: Proc. 6th Int. Conf. on Erosion by Liquid and Solid Impact, Cambridge University, U. K., 1984, paper 54.

    Google Scholar 

  2. D. Mills, J. S. Mason, and K. N. Tong: Proc. 6th Int. Conf. on Erosion by Liquid and Solid Impact, Cambridge University, U.K., 1984, paper 58.

    Google Scholar 

  3. A. V. Levy and S. Jahanmir:Corrosion-Erosion Behavior of Materials, K. Natesan, ed., Metallurgical Society of AIME, New York, NY, 1980, pp. 177–89.

    Google Scholar 

  4. T. Foley and A. Levy:Wear, 1983, vol. 91, pp. 45–64.

    Article  Google Scholar 

  5. L. P. McCabe, G. A. Sargent, and H. Conrad:Wear, 1985, vol. 105, pp. 257–77.

    Article  Google Scholar 

  6. M. Emiliani and R. Brown:Wear, 1984, vol. 94, pp. 323–38.

    Article  Google Scholar 

  7. J. Salik, D. Buckley, and W. A. Brainard:Wear, 1981, vol. 65, pp. 351–58.

    Article  Google Scholar 

  8. C. M. Preece, S. Vaidya, and S. Dakshinamoorthy:Erosion: Pre-vention and Useful Applications, ASTM STP 664, W.F. Adler, ed., ASTM, 1979, pp. 409-33.

  9. A. Venugopal Reddy and G. Sundararajan:Wear, 1985, vol. 103, pp. 133–48.

    Article  Google Scholar 

  10. H. Mecking:Strength of Metals and Alloys, vol. 3,Proceedings of5th Int. Conf., Aachen, Federal Republic of Germany, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, 1980, pp. 1573–94.

    Google Scholar 

  11. A. Venugopal Reddy, G. Sundararajan, R. Sivakumar, and P.Rama Rao:Acta Metall., 1984, vol. 32, pp. 1305–16.

    Article  Google Scholar 

  12. G. Sundararajan:Trans, of Ind. Inst, of Metals, 1983, vol. 36, pp. 474–94.

    Google Scholar 

  13. G. Sundararajan and P. G. Shewmon:Acta Metall., 1983, vol. 31, pp. 101–09.

    Article  Google Scholar 

  14. Niels Hansen:Metall. Trans. A, 1985, vol. 16A, pp. 2167–90.

    Article  Google Scholar 

  15. R. W. Armstrong: “Yield, Flow and Fracture of Polycrystals,” T. N. Baker, ed.,Applied Science, 1983, pp. 1-31.

  16. A. W. Thompson:Work Hardening in Tension and Fatigue, A. W. Thompson, ed., ASME, 1977, pp. 89-127.

  17. M. F. Ashby:Stengthening Methods in Crystals, A. Kelly and R.B. Nicholson, eds., Wiley, New York, NY, 1971, pp. 137–92.

    Google Scholar 

  18. A. W. Thompson, M. I. Baskes, and W. G. Flanagan:Acta Metall., 1973, vol. 21, pp. 1017–28.

    Article  Google Scholar 

  19. H. Dong and A. W. Thompson:Metall. Trans. A, 1985, vol. 16A, pp. 1025–30.

    Article  Google Scholar 

  20. J. Gil Sevillano, P. Van Houtte, and E. Aernoudt:Progress in Mate-rials Science, J. W. Christian, P. Haasen, and T. B. Massalski, eds., Pergamon Press, New York, NY, 1982, vol. 25, pp. 69–411.

    Google Scholar 

  21. I. Finnie:Proc. 3rd U.S. Natl. Congr. of Applied Mechanics, ASME, New York, NY, 1958, pp. 527–32.

    Google Scholar 

  22. I. M. Hutchings:Wear, 1981, vol. 70, pp. 269–81.

    Article  Google Scholar 

  23. H. Conrad, M. Doner, and B. de Meester:Titanium Science and Technology, R. I. Jaffee and H. M. Burte, eds., Plenum Press, New York, NY, 1973, vol. 2, pp. 969–1005.

    Google Scholar 

  24. H. Conrad, B. de Meester, M. Doner, and K. Okazaki:Physics of Solid Solution Strengthening, E. W. Collings and H. L. Gregel, eds., Plenum Press, New York, NY, 1975, pp. 1–45.

    Chapter  Google Scholar 

  25. R. E. Winter and I. M. Hutchings:Wear, 1975, vol. 34, pp. 141–48.

    Article  Google Scholar 

  26. S. P. Timothy and I. M. Hutchings: Proceedings of 6th International Conference on Erosion by Liquid and Solid Impact, Cambridge Uni-versity, U.K., 1983, paper 43.

    Google Scholar 

  27. T. Christman and P. G. Shewmon:Wear, 1979, vol. 52, pp. 57–70.

    Article  Google Scholar 

  28. H. C. Rogers:Ann. Rev. Mat. Sei., 1979, vol. 9, pp. 283–311.

    Article  Google Scholar 

  29. D. Peirce, R. J. Asar, and A. Needleman:Acta Metall., 1982, vol. 30, pp. 1087–1119.

    Article  Google Scholar 

  30. G. Sundararajan:Proceedings of the 6th Int. Conf. on Fracture, New Delhi, Pergamon Press, 1984, vol. 5, pp. 3119–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, A.V., Sundararajan, G. The influence of grain size on the erosion rate of metals. Metall Trans A 18, 1043–1052 (1987). https://doi.org/10.1007/BF02668553

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668553

Navigation