Skip to main content
Log in

Multiple spin echoes for the evaluation of trabecular bone quality

  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

We report a simple and efficient MR method for the evaluation of trabecular bone quality. This technique is based on detection and imaging of Multiple Spin-Echoes (MSE), a manifestation of the dipolar field generated by residual intermolecular dipolar couplings in liquids. In the particular implementation we have used, originally proposed by Bowtell [J. Magn. Reson. 100 (1992) 1; J. Magn. Reson. 88 (1990) 643; Phys. Rev. Lett. 76 (1996) 4971]. multiple spin echoes (MSE) are refocused in a two-pulse experiment in the presence of a correlation linear magnetic field gradient Gc. This gradient generates a magnetisation helix and results in the spatial modulation of the sample magnetisation. In heterogeneous systems, the amplitude of the MSE signal depends on sample heterogeneity over a distanced= π.(γ/Gcτ) which is half a cycle of the magnetisation helix, thus providing a novel contrast mechanism that can be tuned to a specific length scale. We have exploited this mechanism to study young bovine trabecular bone samples ex-vivo. We show that MSE images present a different contrast from conventional MR images, and that, by varying the experimental parameters, the image contrast can be related to specific trabecular pore sizes. The potential of this technique for the early diagnosis of osteoporotic diseases is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Francis RM. Osteoporosis, pathogenesis and management. Dordrecht: Kluwer Academic Publishers, 1990.

    Google Scholar 

  2. Parfitt AM. Age related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences. Calcif Tissue Int 1984;36:S123–8.

    Article  PubMed  Google Scholar 

  3. Ford JC, Wehrli FW. In vivo quantitative characterisation of trabecular bone by NMR interferometry and localised proton spectroscopy. Magn Reson Med 1991; 17:543 -51.

    Article  PubMed  CAS  Google Scholar 

  4. Majumdar S. Thomasson D, Shimakawa A, Genant HK. Quantitation of the susceptibility difference between trabecular bone and bone marrow: experimental studies. Magn Reson Med 1991:22:111–27.

    Article  PubMed  CAS  Google Scholar 

  5. Wehrli FW. Ford JC Attic M. Kressel HY, Kaplan FS. Trabecular structure: preliminary application of MR interferometry. Radiology 1991:179:615–21.

    PubMed  CAS  Google Scholar 

  6. Ford JC, Wehrli FW. Chung HV. Magnetic field distribution in models of trabecular bone. Magn Reson Med 1993:30:373–9.

    Article  PubMed  CAS  Google Scholar 

  7. Jara H. Wehrli FW, Chung HW, Ford JC. High-resolution variable flip angle 3D MR imaging of trabecular microstructures in vivo. Magn Reson Med 1993:29:528–39.

    Article  PubMed  CAS  Google Scholar 

  8. Chung HW. Wehrli FW. Williams JL, Wehrli S. Three-dimensional nuclear magnetic resonance microimaging of trabecular bone. J Bone Miner Res 1995:10:1452–6.

    Article  PubMed  CAS  Google Scholar 

  9. Richter W. Lee S, Warren WS. He Q. Imaging with intermolecular multiple quantum coherences in solution nuclear magnetic resonance. Science 1995:267:654 -7.

    Article  PubMed  CAS  Google Scholar 

  10. Warren WS. Richter W. Andreotti AH. Farmer BT. Generation of impossible cross-peaks between bulk water and biomoleeules in solution NMR. Science 1993:262:2005–9.

    Article  PubMed  CAS  Google Scholar 

  11. Bifone A. Payne GS. Leach MO. In vivo multiple spin echoes. J Magn Reson 1998:135:30–6.

    Article  PubMed  CAS  Google Scholar 

  12. Zhong J. Chen Z, Kwok E. In vivo intermolecular double-quantum imaging on a clinical 1.5 T MR scanner. Magn Reson Med 2000:43:335–41.

    Article  PubMed  CAS  Google Scholar 

  13. Rizi RR. Ahn S, Alsop DC. Garrett-Roe S. Mescher M. Richter W, Schnall MD, Leigh JS. Warren WS. Intermolecular zeroquantum coherence imaging of the human brain. Magn Reson Med 2000:43:627–32.

    Article  PubMed  CAS  Google Scholar 

  14. Bowtell R. Indirect detection via the dipolar demagnetizing field. J Magn Reson 1992:100:1–17.

    CAS  Google Scholar 

  15. Bowtell R, Bowley RM. Glover P. Multiple spin echoes in liquids in a high magnetic field. J Magn Reson 1990:88:643–51.

    Google Scholar 

  16. Bowtell R. Robyr P. Structural investigation with the dipolar demagnetizing field in solution NMR. Phys Rev Lett 1996:76:4971–4.

    Article  PubMed  CAS  Google Scholar 

  17. Lian J. Williams DS, Lowe IJ. Magnetic resonance imaging of diffusion in the presence of background gradients and imaging of background gradients. J Magn Reson A 1994:106:65–74.

    Article  CAS  Google Scholar 

  18. Capuani S, Curzi F, Alessandri FM, Bifone A. Maraviglia B. Characterization of trabecular bone by dipolar demagnetizing field MR imaging. Magn Reson Med 2001:46:683–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Maraviglia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capuani, S., Alessandri, F.M., Bifone, A. et al. Multiple spin echoes for the evaluation of trabecular bone quality. MAGMA 14, 3–9 (2002). https://doi.org/10.1007/BF02668181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668181

Keywords

Navigation