Skip to main content
Log in

Creatine kinase: An enzyme with a central role in cellular energy metabolism

  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘PCr-circuit’ for cellular energy homeostasis. Biochem J 1992;281:21–40.

    PubMed  CAS  Google Scholar 

  2. McFarland EW, Kushmerick MJ, Moerland T. Activity of creatine kinase in a contracting mammalian muscle of uniform fiber type. Biophy J 1994;67:1912–24.

    CAS  Google Scholar 

  3. Wiseman RW, Kushmerick M. Creatine kinase equilibrium follows solution thermodynamics in skeletal muscle:31P-NMR studies using creatine analogs. J Biol Chem 1995;270:12428–38.

    Article  PubMed  CAS  Google Scholar 

  4. Wallimann T.31P-NMR-measured creatine kinase reaction flux in muscle: a CAVEAT!. J Muscle Res Cell Motil 1994;17:177–81.

    Article  Google Scholar 

  5. VanDeursen J, Wieringa B, et al. Creatine kinase in skeletal muscle energy metabolism: a study of mouse mutants with graded reduction in muscle CK expression. Proc Natl Acad Sci USA 1994;91:9091–5.

    Article  CAS  Google Scholar 

  6. Wallimann T. Dissecting the role of creatine kinase. Curr Biol 1994;1:42–6.

    Article  Google Scholar 

  7. Kreis R, Koster M, Kamber M, Hoppeler H, Boesch C. Peak assignment in localized1H MR spectra of human muscle based on oral creatine supplementation. Magn Res Med 1997;37:159–63.

    Article  CAS  Google Scholar 

  8. LeRumeur E, LeTallec N, Kernec F, de Certaines JD. Kinetics of ATP to ADP β-phosphoryl conversion in contracting skeletal muscle by in vivo31P-NMR magnetization transfer. NMR Biomed 1997;10:67–72.

    Article  CAS  Google Scholar 

  9. Ntziachristos V, Kreis R, Boesch C, Quistorff B. Dipolar resonance frequency shifts in1H MR spectra of skeletal muscle: confirmation in rats at 4.7 T in vivo and observation of changes postmortem. Magn Reson Med 1997;38:33–9.

    Article  PubMed  CAS  Google Scholar 

  10. Williams JP, Headrick JP. Differences in nucleotide compartmentation and energy state in isolated and in sit rat heart: assessment by31P-NMR spectroscopy. Biochim Biophys Acta 1996;1276:71–9.

    Article  PubMed  Google Scholar 

  11. Hochachka PW, Mossey MK. Does muscle creatine phosphokinase have access to the total pool of phosphocreatine plus creatine? Am J Physiol 1998;274:868–72.

    Google Scholar 

  12. VanDorsten F, Wyss M, Wallimann T, Nicolay K. Activation of sea urchin sperm motility is accompanied by an increase in the creatine kinase exchange flux. Biochem J 1997;325:411–6.

    CAS  Google Scholar 

  13. Kaldis P, Kamp G, Piendl T, Wallimann T. Functions of creatine kinase isoenzymes in spermatozoa. Adv Develop Biol 1997;5:275–312.

    Article  CAS  Google Scholar 

  14. Steeghs K, Wieringa B, et al. Altered Ca2+-response in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell 1997;89:93–103.

    Article  PubMed  CAS  Google Scholar 

  15. Rossi AM, Eppenberger HM, Volpe P, Cotrufo R, Wallimann T. Muscle type MM-creatine kinase is specifically bound to sarcoplasmic reticulum and can support Ca2+-uptake and regulate local ATP/ADP ratios. J Biol Chem 1990;265:5258–66.

    PubMed  CAS  Google Scholar 

  16. Korge P, Campbell KB. Local ATP regeneration is important for sarcoplasmic reticulum Ca2+-pump function. Am J Physiol 1994;267:357–66.

    Google Scholar 

  17. Minajeva A, Ventura-Calapier R, Veksler V. Ca2+-uptake by cardiac sarcoplasmic reticulum ATPase in situ strongly depends on bound creatine kinase. Pflügers Arch 1996;432:904–12.

    Article  PubMed  CAS  Google Scholar 

  18. Ponticos M, Lu QL, Morgan JE, Hardie DG, Partridge TA, Carling D. Dual regulation of AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J 1998;17:1688–99.

    Article  PubMed  CAS  Google Scholar 

  19. Stolz M, Wallimann T. Myofibrillar interaction of cytosolic creatine kinase (CK) isoenzymes: allocation of N-terminal binding epitope in MM-CK and BB-CK. J Cell Sci 1998;111:1207–16.

    PubMed  CAS  Google Scholar 

  20. Kraft Th, Nier V, Brenner B, Wallimann T. Binding of creatine kinase to theI-band of skinned skeletal muscle fibers is mediated by glycolytic enzymes: an in situ biochemical approach. Biophys J 1996;70:A292.

  21. Schlattner U, Forstner M, Eder M, Stachowiak O, Fritz-Wolf K, and Wallimann T (1998) Functional aspects of the X-ray structure of mitochondrial creatine kinase: a molecular physiology approach. Mol Cell Biochem 184 (in press).

  22. Wyss M, Smeitink J, Wevers R, Wallimann T. Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism. Biochim Biophys Acta 1992;1102:119–66.

    Article  PubMed  CAS  Google Scholar 

  23. Brdiczka D, Kaldis P, Wallimann T. In vitro complex formation between the octamer of mitochondrial creatine kinase and porin. J Biol Chem 1994;269:27640–4.

    PubMed  CAS  Google Scholar 

  24. Beutner G, Rück A, Riede B, Welte W, Brdiczka D. Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett 1997;396:189–95.

    Article  Google Scholar 

  25. O’Gorman E, Beutner G, Dolder M, Koretsky AP, Brdiczka D, Wallimann T. The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett 1997;414:253–7.

    Article  PubMed  CAS  Google Scholar 

  26. Fritz-Wolf K, Schnyder T, Wallimann T, Kabsch W. Structure of mitochondrial creatine kinase. Nature 1996;381:341–5.

    Article  PubMed  CAS  Google Scholar 

  27. Stachowiak O, Schlattner U, Dolder M, and Wallimann T (1998) Oligomeric state and membrane binding behaviour of creatine kinase isoenzymes: implicaitons for cellular function and mitochondrial structure. Mol Cell Biochem 184 (in press).

  28. O’Gorman E, Fuchs K-H, Tittmann P, Gross H, Wallimann T. Crystalline mitochondrial inclusion bodies isolated from creatine-depleted rat soleus muscle. J Cell Sci 1997;110:1403–11.

    PubMed  CAS  Google Scholar 

  29. Stachowiak O, Dolder M, Wallimann T, Richter Ch. Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation. J Biol Chem 1998;273:16194–699.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallimann, T., Dolder, M., Schlattner, U. et al. Creatine kinase: An enzyme with a central role in cellular energy metabolism. MAGMA 6, 116–119 (1998). https://doi.org/10.1007/BF02660927

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02660927

Keywords

Navigation