Skip to main content
Log in

A structural study of oxidation in a zirconia-toughened alumina fiber-reinforced NiAl composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A composite of NiAl reinforced with continuous zirconia-toughened alumina (PRD-166) fibers was fabricated by pressure casting. The chemical stability of the composite at 1100 °C in vacuum and air was investigated by optical and transmission electron microscopy and energy-dispersive spectroscopy (EDS). Exposure of the fiber to the molten metal caused ZrO2 particles in the fiber to move to the surface, thus permitting dissolution of ZrO2 into the molten metal. The dissolved Zr reacted with A12O3 of the fiber and formed ZrO2 particles in some regions at the fiber/matrix interface. Vacuum annealing did not result in any noticeable change in the microstructure. Air annealing led to the precipitation of ZrO2 within the matrix near the fiber/matrix interface. A thin layer of A12O3 was observed to envelop the ZrO2 particles and cover the fiber. During air annealing, Al oxidized preferentially, thereby continually reducing the Al content of the β-NiAl. This caused a progressive change in the microstructure of the matrix from β-NiAl to premartensitic microstructure, to martensitic structure, followed by nucleation and growth of Ni3Al, to the development of a two-phase microstructure consisting of Ni3Al cuboids dispersed in a disordered α-Ni(Al) and, subsequently, the formation of single-phase α-Ni(Al). The orientation relationship between Ni3Al and NiAl was\(\langle 1\bar 11\rangle _{{\text{NiAl}}} //\langle 0\bar 11\rangle _{{\text{Ni}}_{\text{3}} {\text{Al}}} \). Internal oxidation of α-Ni(Al) led to precipitation of A12O3 particles which subsequently reacted with Ni, in the presence of O, to form NiO · A12O3 spinel. The Ni was oxidized to formβ-NiO. Titanium-containing, platelike precipitates with a {111} habit plane were occasionally observed in NiO. Some larger NiTiO3 particles were also formed within NiO. Diffusion of O through the interphase and grain boundaries of the fiber is believed to be responsible for the rapid oxidation of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.S. Stoloff: inHigh-Temperature Ordered Intermetallic Alloys, MRS Symp. Proc, C.C. Koch, C.T. Liu, and N.S. Stoloff, eds., Materials Research Society, Pittsburgh, PA, 1985, vol. 39, pp. 3–27.

    Google Scholar 

  2. R.E. Schafrik:Metall. Trans. A, 1977, vol. 8A, pp. 1003–06.

    CAS  Google Scholar 

  3. J.K. Doychak and T.E. Mitchell inHigh-Temperature Ordered Intermetallic Alloys, MRS Symp. Proc, C.C. Koch, C.T. Liu, and N.S. Stoloff, eds., Materials Research Society, Pittsburgh, PA, 1985, vol. 39, pp. 475–84.

    Google Scholar 

  4. S. Reuss and H. Vehoff:Scripta Metall. Mater., 1990, vol. 24, p. 1021.

    Article  CAS  Google Scholar 

  5. R.D. Noebe, P.R. Bowman, C.L. Cullers, and S.V. Raj: inHigh-Temperature Ordered Intermetallic Alloys IV, MRS Symp. Proc., L.A. Johnson, D.P. Pope, and J.O. Stiegler, eds., 1991, vol. 213, pp. 589–96.

  6. K. Vedula, K.H. Hahn, and B. Boulogne: inHigh-Temperature Ordered Intermetallic Alloys III, MRS Symp. Proc, C.T. Liu, A.I. Taub, N.S. Stoloff, and C.C. Koch, eds., Materials Research Society,Pittsburgh, PA, 1989, vol. 133, pp. 299–304.

    Google Scholar 

  7. I. Baker and P.R. Monroe: inHigh Temperature Aluminides and Intermetallics, TMS Conf. Proc, S.H. Whang, C.T. Liu, D. P. Pope, and J.O. Steigler, eds., TMS, Warrendale, PA, 1990, pp. 425–52.

    Google Scholar 

  8. M. Rudy and G. Tauthoff: inHigh-Temperature Ordered Intermetallic Alloys, MRS Symp. Proc, C.C. Koch, C.T. Liu, and N.S. Stoloff, eds., Materials Research Society, Pittsburgh, PA, 1985, vol. 39, pp. 327–33.

    Google Scholar 

  9. J.D. Whittenberger, R. Ray, and S.C. Jha:High-Temperature Ordered Intermetallic Alloys IV, MRS Symp. Proc, L.A. Johnson, D.P. Pope, and J.O. Stiegler, eds., Materials Research Society, Pittsburgh, PA, 1991, vol. 213, pp. 581–87.

    Google Scholar 

  10. J.C. Romine: inCeramic Engineering and Science Proceedings, American Ceramic Society, Westerville, OH, 1987, vol. 8, pp. 755–65.

    Google Scholar 

  11. R.W. Clarck and J.D. Whittenberger:Thermal Expansion, T. A. Hahn, ed., Plenum Press, New York, NY, 1984, pp. 189–96.

    Google Scholar 

  12. S.M. Russ:Metall. Trans. A, 1990, vol. 21A, pp. 1595–1602.

    CAS  Google Scholar 

  13. D.J. Pysher and R.E. Tressler:J. Mater. Sci., 1992, vol. 27, pp. 423–28.

    Article  CAS  Google Scholar 

  14. S. Nourbakhsh, O. Sahin, W.H. Rhee, and H. Margolin:Metall. Trans. A, 1991, vol. 22A, pp. 3059–64.

    CAS  Google Scholar 

  15. R.C. Garvie, R.H.J. Hannink, and R.T. Pascoe:Nature, 1975, vol. 258, pp. 703–04.

    Article  CAS  Google Scholar 

  16. O. Sahin, S. Nourbakhsh, W.H. Rhee, and H. Margolin:Metall. Trans. A, 1992, vol. 23A, pp. 3151–60.

    CAS  Google Scholar 

  17. S. Nourbakhsh, O. Sahin, W.H. Rhee, and H. Margolin:Metall. Trans. A, 1993, vol. 24A, pp. 435–43.

    CAS  Google Scholar 

  18. R.A. Perkins, K.T. Chiang, G.H. Meier, and R. Miller: inOxidation of High-Temperature Intermetallics, T. Grobstein and J. Doychak, eds., TMS, Warrendale, PA1989, pp. 157–69.

    Google Scholar 

  19. S. Rosen and J.A. Goebel:Trans. TMS-A1ME, 1968, vol. 242, pp. 722–24.

    CAS  Google Scholar 

  20. I.M. Robertson and C.M. Wayman:Metall. Trans. A, 1984, vol. 15A, pp. 1353–57.

    CAS  Google Scholar 

  21. M. Chandrasekaran and K. Mukherjee:Mater. Sci. Eng., 1974, vol. 14, pp. 97–99.

    Article  Google Scholar 

  22. S. Chakravorty and C.M. Wayman:Metall. Trans. A, 1976, vol. 7A, pp. 555-68 and 569–82.

    CAS  Google Scholar 

  23. T.B. Massalski:Binary Alloy Phase Diagrams, ASM, Metals Park, OH, 1986, vol. l,pp. 142–43.

    Google Scholar 

  24. J.W. Edington:Practical Electron Microscopy in Materials Science, Monograph 4, N.V. Philips Gloeilamperfabrieken, Eindhoven, The Netherlands, 1976, p. 117.

  25. F.S. pcttit:Trans. TMS-AIME, 1967, vol. 239, pp. 1296–1305.

    Google Scholar 

  26. J.K. Doychak, T.E. Mitchell, and J.L. Smialek: inHigh Temperature Ordered Intermetallic Alloys, MRS Symp. Proc, C.C. Koch, C.T. Liu, and N.S. Stoloff, eds., 1985, vol. 39, pp. 475–84.

  27. J.A. Nesbitt, E.J. Vinarcik, C.A. Barrett, and J.K. Doychak:Mater. Sci. Eng., 1992, vol. A153, pp. 561–66.

    CAS  Google Scholar 

  28. O. Sahin, S. Nourbakhsh, and H. Margolin: Polytechnic University, Brooklyn, NY, unpublished research, 1992.

  29. P.F. Tortorelli, J.H. Devan, C.G. McKamey, and M. Howell: inlntermetallic Matrix Composites, MRS Symp. Proc, D. L. Anton, R. McMeeking, D. Miracle, and P. Martin, eds., 1990, vol. 194, pp. 361–66.

  30. P.F. Tortorelli and J.H. Devan: Oak Ridge National Laboratory, Oak Ridge, TN, unpublished research, 1993.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nourbakhsh, S., Sahin, O. & Margolin, H. A structural study of oxidation in a zirconia-toughened alumina fiber-reinforced NiAl composite. Metall Mater Trans A 25, 1291–1299 (1994). https://doi.org/10.1007/BF02652303

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652303

Keywords

Navigation