Skip to main content
Log in

RHEED and XPS observations of trimethylgallium adsorption on GaAs (001) surfaces—Relevance to atomic layer epitaxy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A series of experiments under UHV conditions have been performed to determine the surface reacted species and surface structure that results from trimethylgallium (TMGa) adsorption on a GaAs (001) As-stabilized surface. In these experiments, the conditions were chosen to simulate typical ALE growth conditions. Thus, the substrate temperature was varied between 320 and 530° and an admittance of 10−7 to 5 × 10−6 Torr of TMGa with exposure time of 5 to 15 sec were applied. X-ray photoelectron spectroscopy (XPS) was used to identify the chemical species on the surface after TMGa adsorption. The XPS intensity associated with the Ga 2p 3/2 level was used to monitor the quantity of adsorbed Ga and RHEED was used to monitor the surface structure. Below 440°, the Ga intensity was saturated at a level close to 1 ML and no definite Ga-stabilized 4 ×X RHEED pattern was observed. At 320° and an exposure of 200 L, a 2 × 4 As-stabilized RHEED pattern still existed, which suggests that the reaction between impinging TMGa and the (001) GaAs surface is very slow at this temperature. When the substrate temperature was between 440 and 530° exposure to greater than 6 L of TMGa resulted in saturation of surface Ga atoms to one monolayer (ML) and a successive change of surface reconstruction from 2×4 As-stabilized to 4 ×X (X = 1 or 2) Ga-stabilized surface. In all runs no carbon related species were observed within the XPS detection limit. This observation suggests that adsorption and decomposition of TMGa on As sites goes to completion very rapidly in this temperature range. From these observations we conclude that the self limiting mechanism in ALE occurs because of the differential chemisorption and decomposition rates of TMGa on As and Ga sites and that the dominant surface adsorbate is atomic Ga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. DenBaars, C. A. Beyler, A. Hariz and P. D. Dapkus,Appl. Phys. Lett.51, 1530 (1987).

    Article  CAS  Google Scholar 

  2. K. Mori, M. Yoshida, A. Usui and H. Terao, Appl. Phys. Lett.52, 27 (1988).

    Article  CAS  Google Scholar 

  3. J. Nishizawa, H. Abe and T. Kurabayashi, J. Electrochem. Soc.132, 1197 (1985).

    Article  CAS  Google Scholar 

  4. J. Nishizawa, T. Kurabayashi, H. Abe and A. Nozoe, Surf. Sci.185, 249 (1987).

    Article  CAS  Google Scholar 

  5. Y. Aoyagi, A. Doi, S. Iwai and S. Nambe, J. Vac. Sci. Technol.B5, 1460 (1987).

    Google Scholar 

  6. H. Ishii, H. Ohno, K. Matsuzaki and H. Hasegawa, J. Cryst. Growth,95, 132 (1989).

    Article  CAS  Google Scholar 

  7. K. Kodama, M. Ozaki, K. Mochizuki and N. Ohtsuka, Appl. Phys. Lett.54, 656 (1989).

    Article  CAS  Google Scholar 

  8. P. Drathen, W. Ranke and K. Jacobi, Surf. Sci.77, L162 (1978).

    Article  CAS  Google Scholar 

  9. R. Z. Bachrach, R. S. Bauer, P. Chiaradia and G. V. Hansson, J. Vac. Sci. Technol.18, 797 (1981).

    Article  CAS  Google Scholar 

  10. H. Ohno, H. Ishii, K. Matsuzaki and H. Hasegawa, Appl. Phys. Lett.54, 1124 (1989).

    Article  CAS  Google Scholar 

  11. M. D. Pashley, K. W. Haberern and W. Friday, Phys. Rev. Lett.60, 2176 (1988).

    Article  CAS  Google Scholar 

  12. A. Doi, Y. Aoyagi and S. Namba, Appl. Phys. Lett.49, 785(1986).

    Article  CAS  Google Scholar 

  13. S. P. DenBaars, P. D. Dapkus, C. A. Beyler, A. Hariz and K. M. Dzurko, J. Cryst. Growth93, 195 (1988).

    Article  CAS  Google Scholar 

  14. M. A. Tischler and S. M. Bedair, Appl. Phys. Lett.48, 1681(1986).

    Article  CAS  Google Scholar 

  15. D. J. Frankel, C. Yu, J. P. Harbison and H. H. Farrell, J. Vac. Sci. Technol.B5, 1113 (1987).

    Google Scholar 

  16. X. Hou, G. Dong, X. Ding and X. Wang, J. Phys. C: Solid State Phys.20, L121 (1987).

    Article  CAS  Google Scholar 

  17. A. Y. Cho, J. Appl. Phys.47, 2841 (1976).

    Article  CAS  Google Scholar 

  18. A. J. Van Bommel and J. E. Crombeen, Surf. Sci.57, 437 (1976).

    Article  Google Scholar 

  19. K. Mochizuki, M. Ozeki, K. Kodama and N. Ohtsuka, J. Cryst. Growth93, 557 (1988).

    Article  CAS  Google Scholar 

  20. H. H. Farrell, J. P. Harbison and L. D. Peterson, J. Vac. Sci. Technol.B5, 1482 (1987).

    Google Scholar 

  21. T. F. Kuech, M. A. Tischler, P. J. Wang, G. Scilla, R.Potemski and F. Cardone, Appl. Phys. Lett.53, 1317 (1988).

    Article  CAS  Google Scholar 

  22. E. Colas, R. Bhat and B. J. Skromme, D-8, International Symposium on GaAs and Related Compounds, Atlanta, GA(1988).

  23. D. H. Reep and S. K. Ghandi, J. Electrochem. Soc.130, 675(1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is partially supported by the Office of Naval Research under contract No. N00014-84-K-0331 and Solar Energy Research Institute Subcontract No. XB-5-05009-3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maa, B.Y., Dapkus, P.D. RHEED and XPS observations of trimethylgallium adsorption on GaAs (001) surfaces—Relevance to atomic layer epitaxy. J. Electron. Mater. 19, 289–294 (1990). https://doi.org/10.1007/BF02651286

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651286

Key words

Navigation