Skip to main content
Log in

Simulation of Argon Gas Flow Effects in a Continuous Slab Caster

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Three-dimensional finite-volume-based numerical models of fluid, heat, and mass transport have been developed and applied to help explain the complex inter-related phenomena of multiphase fluid flow, superheat dissipation, and grade intermixing during the continuous casting of steel slabs. Gas bubbles are simulated using a continuum model, which calculates the volume fraction and velocities of the gas, and its effect on the liquid flow. Turbulence has been incorporated using the standardK-ε turbulence model. Reasonable agreement has been achieved between predicted velocities and corresponding measurements and observations in full-scale water models, both with and without gas injection. The effects of argon gas bubble injection on flow-related phenomena are investigated with simulations of a typical steel slab caster. Argon bubbles alter the flow pattern in the upper recirculation zone, shifting the impingement point and recirculation zones upward. The effect increases with increasing gas fraction and decreasing bubble size. Argon injection also causes superheat to be removed higher in the caster, moves the hot spot upward, lowers the peak heat flux, and increases heat extraction from the wide face and meniscus regions. During a steel grade transition, argon injection slightly affects slab surface composition but has no effect on intermixing in the slab interior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C:

relative concentration in strand

C:

p specific heat (liquid steel) (J kg−1 K−1)

Deff :

effective diffusivity (liquid) (m2 s−1)

Do :

molecular diffusivity (liquid) (m2 s−1)

Dg :

apparent gas bubble diffusivity (m2 s−1)

dg :

diameter of gas bubbles entering mold (mm)

dgi :

diameter of gas bubbles at injection point in nozzle (mm)

E :

wall roughness constant (inK-ε wall laws)

F :

mass fraction of a given element

h :

heat transfer coefficient (top surface) (W m−2

K−1)K :

turbulent kinetic energy (m2 s2)

Ko :

turbulent kinetic energy (at inlet to mold) (m2 s−2)

ko :

laminar thermal conductivity (W m−1 K−1)

Kshell :

solidification constant (m s−0.5)

L o :

nominal nozzle submergence depth (from top surface to top of nozzle port) (m)

Lh :

inlet height (mm)

Lw :

inlet width (mm)

Ln :

jet submergence depth (from top surface to top of the jet) (m)

N :

strand thickness (across narrow face) (m)

n :

normal direction of boundaries

p :

static pressure (relative to outlet plane of domain) (N s−2)

Pr0 :

laminar Prandtl Number, (Cpμ0k -10 )

Prt :

turbulent Prandtl Number

Qg :

gas injection rate (entering nozzle gate) (m3 s−1)

Re:

Reynolds number (Vc√NWρμ -10 )

qsh :

superheat flux from liquid steel to solidifying shell (W m−2)

Sct :

turbulent Schmidt number(μ,ρ −1D -1g ) T temperature (°C)

To :

casting temperature (pour temperature) (at inlet to mold) (°C)

Tliq :

liquidus temperature (°C)

Tsol :

solidus temperature (°C)

T :

ambient temperature (°C)

Vc :

casting speed (m s−1)

vgt :

gas bubble terminal velocity (m s−1)

vgx :

gas velocity component inx direction (m s−1)

vgy :

gas velocity component iny direction

(m s−1)vgz :

gas velocity component in z direction (m s−1)

vx :

liquid velocity component inx direction (m s−1)

Vx0 :

liquid normal velocity through inlet to mold (m s−1)

vy :

liquid velocity component in y direction (m s−1)

Vy0 :

liquid horizontal velocity through inlet to mold (m s−1)

vz :

liquid velocity component in z direction (m s−1)

vz0 :

liquid downward velocity through inlet to mold (m s−1)

W :

strand width (across wide face) (m)

Z:

strand length simulated (m)

z:

distance down strand or slab (m)

α :

jet angle at inlet (Figure 6) (°)

α0 :

nominal angle of nozzle port edges at inlet (Figure 6) (°)

ΔTS :

superheat temperatureT o - Tliq (°C)

ε:

dissipation rate (m2 s−3)

ε0 :

inlet dissipation rate (m2 s−3)

μeff :

liquid effective viscosity (kg m−1 s−1)

μo :

liquid laminar (molecular) viscosity

(kg m−1 :

s−1)

μi :

liquid turbulent viscosity (kg m−1 s−1)

ρ:

liquid density (kg m−3)

σg :

gas volume fraction (Pct)

σgo :

gas volume fraction (at inlet to mold) (Pct)

References

  1. M. Salcudean and K.Y.M. Lai:Numer. Heat Transfer, 1988, vol. 14, pp. 97–111.

    Article  Google Scholar 

  2. M. Salcudean, K.Y.M. Lai, and R.I.L. Guthrie:Can. J. Chem. Eng., 1984, vol. 63, pp. 51–61.

    Article  Google Scholar 

  3. M. Salcudean, C.H. Low, A. Hurda, and R.I.L. Guthrie:Chem. Eng. Commun., 1983, vol. 21, pp. 89–103.

    Article  CAS  Google Scholar 

  4. D. Mazumdar and R.I.L. Guthrie:Metall. Trans. B, 1985, vol. 16B, pp. 83–90.

    CAS  Google Scholar 

  5. T.D. Roy, A.K. Majumdar, and D.B. Spalding:J. Met., 1981 (November), pp. 42-47.

  6. J. Szekely, N. El-Kaddah, and J.H. Grevet: inInt. Conf. on Injection Metallurgy, 1980, pp. 5:1-5:32.

  7. J. Szekely, H.J. Wang, and K.M. Kiser:Metall. Trans. B, 1976, vol. 7B, pp. 287–95.

    CAS  Google Scholar 

  8. P.E. Anagbo and J.K. Brimacombe:Metall. Trans. B, 1990, vol. 2IB, pp. 637–48.

    Google Scholar 

  9. Y.Y. Sheng and G.A. Irons: inProcess Technology Conf. (75th Steelmaking Conf.), L.C. Kuhn, ed., The Iron and Steel Society, Warrendale, PA, 1992, vol. 10.

    Google Scholar 

  10. S.T. Johansen and F. Boysan:Metall. Trans. B, 1988, vol. 19B, pp. 755–64.

    CAS  Google Scholar 

  11. S.T. Johansen, D.G.C. Robertson, K. Woje, and T.A. Engh:Metall. Trans. B, 1988, vol. 19B, pp. 745–54.

    CAS  Google Scholar 

  12. J. Szekely:Fluid Flow Phenomena in Metals Processing, Academic Press, New York, NY, 1979

    Google Scholar 

  13. R. Kumar and N.R. Kuloor:Adv. Chem. Eng., 1970 vol. 8, pp. 256–369.

    Google Scholar 

  14. J.F. Davidson and O.G. Schüler:Trans. Inst. Chem. Eng., 1960, vol. 38, pp. 144–54.

    CAS  Google Scholar 

  15. T. Asaeda and J. Imberger:J. Fluid Mech., 1993, vol. 249, pp. 35–57.

    Article  CAS  Google Scholar 

  16. G.A. Irons and R.I.L. Guthrie:Metall. Trans. B, 1978, vol. 9B, pp. 101–10.

    CAS  Google Scholar 

  17. M. Kawakami, S. Hosono, K. Takahashi, and K. Ito:Tetsu-to-Hagané, 1992, vol. 78 (2), pp. 267–74.

    Google Scholar 

  18. P.E. Anagbo, J.K. Brimacombe, and A.E. Wraith:Chem. Eng. Sci., 1991, vol. 46 (3), pp. 781–88.

    Article  Google Scholar 

  19. M. Sano and K. Mori:Trans. Jpn. lnst. Met., 1976, vol. 17, pp. 344–52.

    Google Scholar 

  20. A.H. Castillejos and J.K. Brimacombe:Metall. Trans. B, 1987, vol. 18B, pp. 649–58.

    CAS  Google Scholar 

  21. A.H. Castillejos and J.K. Brimacombe:Metall. Trans. B, 1987, vol. 18B, pp. 659–71.

    CAS  Google Scholar 

  22. I. Leibson, E.G. Holcomb, A.G. Cacoso, and J.J. Jacmic:AIChE. J., 1956, vol. 2 (September), pp. 296–306.

    Article  Google Scholar 

  23. R.L. Datta, D.H. Napier, and D.M. Newitt:Trans. lnst. Chem. Eng., 1950, vol. 28, pp. 14–26.

    Google Scholar 

  24. G.C. Vliet and G. Leppert:J. Heat Transfer, Trans. ASME, 1961, May, pp. 163–75.

    Google Scholar 

  25. N. Bessho, R. Yoda, and H. Yamasaki:Iron Steelmaker, 1991, vol. 18 (4), pp. 39–44.

    Google Scholar 

  26. N. Tsukamoto, K. Ichikawa, E. Iida, A. Monta, and J. Inoue: in74th Steelmaking Conf. Proc, P.A. Augiuset al., eds., Iron and Steel Society, Warrendale, PA, 1991, vol. 74, pp. 803–08.

    Google Scholar 

  27. P. Andrzejewski, K.-U. Kohler, and W. Pluschkeli:Steel Res., 1992, vol. 3 (6), pp. 242–46.

    Google Scholar 

  28. S.L. Soo:Fluid Dynamics of Multiphase System, Blaisdell Publishing Co., Waltham, MA, 1967, ch. 3.

    Google Scholar 

  29. D.E. Hershey, B.G. Thomas, and F.M. Najjar:Int. J. Numer. Methods Fluids, 1993, vol. 17 (1), pp. 23–49.

    Article  Google Scholar 

  30. B.G. Thomas, L.J. Mika, and F.M. Najjar:Metall. Trans. B, 1990, vol. 21B, pp. 387–400.

    CAS  Google Scholar 

  31. F.M. Najjar: Master's Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 1990.

  32. B.E. Launder and D.B. Spalding:Comp. Methods Appl. Mech. Eng., 1974, vol. 3, pp. 269–89.

    Article  Google Scholar 

  33. X. Huang, B.G. Thomas, and F.M. Najjar:Metall. Trans. B, 1992, vol. 23B, pp. 339–56.

    CAS  Google Scholar 

  34. B.G. Thomas and F.M. Najjar:Appl. Math. Modeling, 1991, vol. 15, pp. 226–43.

    Article  Google Scholar 

  35. X. Huang: Ph.D. Thesis, Tsinghua University, Beijing, 1988.

  36. S.V. Patankar:Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, NY, 1980.

    Google Scholar 

  37. C. Offerman:Scand. J. Metall., 1981, vol. 10, pp. 25–28.

    Google Scholar 

  38. P. Flint: inProc. of 73rd Steelmaking Conf., Iron and Steel Society/AIME, Warrendale, PA, 1990, vol. 73, pp. 481–90.

    Google Scholar 

  39. B.G. Thomas, W.R. Storkman, and A. Moitra: inSixth Int. Iron Steel Congress, Iron and Steel Institute of Japan, Tokyo, Japan, 1990, vol. 2, pp. 348–55.

    Google Scholar 

  40. X. Huang and B.G. Thomas:Metall. Trans. B, 1993, vol. 24B, pp. 379–93.

    CAS  Google Scholar 

  41. M.S. Engelman:FIDAP Theoretical Manual—Revision 4.0, Fluid Dynamics International, Inc., Evanston, IL, 1986.

    Google Scholar 

  42. R. Sussman and J. Schade: Armco Inc., Middletown, OH, private communication, 1992.

  43. R. Sussman, T. Tucker, and J. Hester: Armco Inc., Middletown, OH, private communication, 1992.

  44. J. Birat, M. Larrecq, J. Lamant, and J. Pctegnief: inMold Operation for Quality and Productivity, Iron and Steel Society, Warrendale, PA, 1991, pp. 3–14.

    Google Scholar 

  45. Y.H. Wang: inProcess Technology Conf. (75th Steelmaking Conf), L.G. Kuhn, ed., The Iron and Steel Society, Warrendale, PA, 1992, vol. 10, pp. 271–78.

    Google Scholar 

  46. M. Kumada and I. Mabuchi:Trans. Jpn. Soc. Mech. Eng., 1969, vol. 35, pp. 1053–61.

    Google Scholar 

  47. R. Gas: Inland Steel, Inc., East Chicago, IN, private communication, 1992.

  48. J. Watson: Armco Research & Technology, Middletown, OH, unpublished research, 1993.

  49. P.E. Liley: inHandbook of Single-Phase Convective Heat Transfer, S. Kakac, R.K. Shah, and W. Aung, eds., John Wiley and Sons, New York, NY, 1987, p. 22.1.

    Google Scholar 

  50. R.L. Powell and G.E. Childs: inAmerican Institute of Physics Handbook, M.W. Zemansky, ed., McGraw-Hill, New York, NY, 1972, pp. 4xxx42–4xxx204.

    Google Scholar 

  51. M. Iguchi, Z.-I. Morita, H. Tokunaga, and H. Tatemichi:Iron Steel lnst. Jpn. Int., 1992, vol. 32 (7), pp. 865–72.

    Google Scholar 

  52. D.E. Hershey: Master's Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 1992. $

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, B.G., Huang, X. & Sussman, R.C. Simulation of Argon Gas Flow Effects in a Continuous Slab Caster. Metall Mater Trans B 25, 527–547 (1994). https://doi.org/10.1007/BF02650074

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02650074

Keywords

Navigation