Skip to main content
Log in

Temperature and strain-rate effects on low-cycle fatigue behavior of alloy 800H

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of strain rate (4 × 10-6 to 4 × 10-3 s-1) and temperature on the low-cycle fatigue (LCF) behavior of alloy 800H have been evaluated in the range 750 ° to 950 °. Total axial strain controlled LCF tests were conducted in air at a strain amplitude of ± 0.30 pct. Low-cycle fatigue life decreased with decreasing strain rate and increasing temperature. The cyclic stress response behavior showed a marked variation with temperature and strain rate. The time- and temperature-dependent processes which influence the cyclic stress response and life have been identified and their relative importance assessed. Dynamic strain aging, time-dependent deformation, precipitation of parallel platelets of M23C6on grain boundaries and incoherent ledges of twins, and oxidation were found to operate depending on the test conditions. The largest effect on life was shown by oxidation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Conway, J.T. Beding, and R.H. Stentz:Metall. Trans., 1972, vol. 3, pp. 1633–37.

    Article  CAS  Google Scholar 

  2. J. Bressers, U. Schusser, R. De Cat, E. Fenske, and P. Tambuyser:Effects of the Time Dependent Processes on the Low Cycle Fatigue Behavior of Alloys, Project Cost 501, Report No. CCR 5: P/501/5/1/, Commission of the European Communities, Luxemberg, Mar. 1984.

  3. C.E. Jaske, H. Mindlin, and J.C. Perrin: ASTM STP 520, 1973, pp. 365-76.

  4. J. Bressers:Proc. Int. Conf. on High Temperature Alloys—Their Exploitable Potential, Oct. 15–17, 1985, CEC, Joint Research Centre, Petten, J.B. Marriot, M. Merz, J. Nihaul, and J. Ward, eds., Elsevier Applied Science, London, 1986, pp. 385–410.

    Google Scholar 

  5. A. Czyrska-Filemonowicz and K. Spiradeck:Z. Werkstofftech., 1983, vol. 14, pp. 417–21.

    Article  CAS  Google Scholar 

  6. H.P. Degischer and H. Aigner:Proc. Int. Colloquium on Stainless Steels, Saint-Etienne, 1982, pp. 16-22.

  7. U. Essman and H. Mughrabi:Phil. Mag., 1979, vol. 40, pp. 737–56.

    Google Scholar 

  8. DJ. Quesnel and J.C. Tsou:Mater. Sci. Eng., 1983, vol. 59, pp. 91–113.

    Article  Google Scholar 

  9. A. Czyrska-Filemonowicz, P. Krautwesser, and P.J. Ennis:Applications in Materials Sciences.,Proc. 13th Int. Congr. on Electron Microscopy, July 17-22, 1994, B. Jouffrey and C. Colliex, eds., Les Editions De Physique, Paris, 1994, vol. 2, pp. 33–34.

    Google Scholar 

  10. L.K. Singhal and J.W. Martin:Acta Metall., 1967, vol. 15, pp. 1603- 10.

    Article  CAS  Google Scholar 

  11. A.A. Tavassoli and G. Colombe:Metall. Trans. A, 1978, vol. 9A, pp. 1203–11.

    CAS  Google Scholar 

  12. H.F. Merrick:Metall. Trans., 1974, vol. 5, pp. 891–97.

    Article  CAS  Google Scholar 

  13. D. Founier and A. Pineau:Metall. Trans. A, 1977, vol. 8A, pp. 1095–1105.

    Google Scholar 

  14. C.H. Wells and C.P. Sullivan:Trans. ASM, 1970, vol. 68, pp. 217- 26.

    Google Scholar 

  15. B.A. Lerch and V. Gerold:Acta Metall., 1985, vol. 33, pp. 1709–16.

    Article  CAS  Google Scholar 

  16. B.A. Lerch and V. Gerold:Metall. Trans. A, 1987, vol. 18A, pp. 2135–41.

    CAS  Google Scholar 

  17. M. Valsan, K.B.S. Rao, M. Vijayalakshmi, S.L. Mannan, and D.H. Shastry:Metall. Trans. A, 1992, vol. 23A, pp. 1751–61.

    CAS  Google Scholar 

  18. M. Valsan, K. Bhanu Sankara Rao, and S.L. Mannan:Trans. Ind. Inst. Met., 1989, vol. 42, suppl., pp. 203–16.

    Google Scholar 

  19. C. Calabrese and C. Laird:Mater. Sci. Eng., 1974, vol. 13, pp. 141- 57.

    Article  CAS  Google Scholar 

  20. CE. Feltner and C. Laird: ASTM STP 467, 1970, pp. 77-112.

  21. K.H. Chein and E.A. Starke, Jr:Acta Metall, 1975, vol. 23, pp. 1173- 84.

    Article  Google Scholar 

  22. K.B.S. Rao, H. Schiffers, H. Schuster, and H. Nickel:Metall. Trans. A, 1988, vol. 19A, pp. 359–71.

    CAS  Google Scholar 

  23. Hong Nahm and John Moteff:Metall. Trans. A, 1976, vol. 7A, pp. 1473–77.

    CAS  Google Scholar 

  24. R.E. Villigrana, J.L. Kaae, and J.R. Ellis:Metall. Trans. A, 1981, vol. 12A, pp. 1849–57.

    Google Scholar 

  25. M.E. Abd El-Azim, P.J. Ennis, H. Schuster, F.H. Hammand, and H. Nickel:The Tensile Properties of Alloy 800H and 617 in the Range 20 to 950 °, Report No. Jul-2344, Kernforschungsanlage Juelich, Juelich, Germany, Jan. 1990.

  26. R.A. Mulford and U.F. Kocks:Acta Metall, 1979, vol. 27, pp. 1125- 34.

    Article  CAS  Google Scholar 

  27. K. Bhanu Sankara Rao: Ph.D. Thesis, University of Madras, Madras, and IGCAR-Kalpakkam, Kalpakkam, India, Jan. 1989.

    Google Scholar 

  28. K. Bhanu Sankara Rao, M. Valsan, R. Sandhya, S.L. Mannan, and P. Rodriguez:Trans. Ind. Inst. Met, 1991, vol. 44, pp. 255–70.

    CAS  Google Scholar 

  29. K. Bhanu Sankara Rao, M. Valsan, R. Sandhya, S.L. Mannan, and P. Rodriguez:High Temp. Materials and Processes, 1986, vol. 7, pp. 171–77.

    CAS  Google Scholar 

  30. J. Bressers, L. Remy, and W. Hoffelner:Proc. Conf. High Temperature Alloys for Gas Turbines and Other Applications, Liegh, Oct. 6–9, 1986, W. Betz, ed., D. Reidel Publishing Co, Berlin, 1986, pp. 441–68.

    Google Scholar 

  31. J. Bressers and M. Roth:Proc. ASME Int. Conf. on Advances in Life Prediction Methods, Albany, NY, Apr. 18-20, 1983, D.A. Woodford and J.R. Whitehead, eds., ASME, New York, NY, 1983, pp. 85–92.

    Google Scholar 

  32. S. Bashir and S.D. Antolovich:Superalloys 1984, Proc. 5th Int. Symp. on Superalloys, Oct. 7–11, 1984, Seven Springs Mountain Resort, Champion, PA, M. Gell, C.S. Kortovich, R.H. Bricknell, W.B. Kent, and J.F. Radavich, eds., TMS-AIME, Warrendale, PA, 1984, pp. 295- 307.

    Google Scholar 

  33. B.A. Lerch:Microstructure Effects on the Room and Elevated Temperature LCF Behavior of Waspaloy, NASA Contractor Report No. 165 497, 1982.

  34. M. Clavel, C. Levaillant, and A. Pineau:Creep-Fatigue-Environment Interactions, R.M. Pelloux and N.S. Stollof, eds., TMS-AIME, Warrendale, PA, 1980, pp. 24–45.

    Google Scholar 

  35. S.S. Manson, G.R. Halford, and R.E. Oldrieve:Relation of Cyclic Loading Pattern to Microstructural Fracture in Creep-Fatigue, NASA Technical Memorandum No. 83473, 1984.

  36. K. Bhanu Sankara Rao:Proc. Indo-German Seminar on Trends and Techniques in Modern Materials Research, Kalpakkam, Feb. 1987, Report No. 99C, IGCAR-Kalpakkam, Kalpakkam, India, 1988, pp. 81–92.

    Google Scholar 

  37. D. Sidey and L.F. Coffin, Jr.: ASTM STP 675, 1979, pp. 528-68.

  38. B.K. Min and R. Raj: ASTM STP 675, 1979, pp. 569-91.

  39. D.A. Woodford and L.F. Coffin, Jr.:Grain Boundaries in Engineering Materials, Proc. 4th Bolton Landing Conf., Lake George, NY, Claitors Publishing Division, Baton Rouge, LA, 1974, pp. 421–30.

    Google Scholar 

  40. R.W. Neu and H. Sehitoglu:Metall. Trans. A, 1989, vol. 20A, pp. 1755–67.

    CAS  Google Scholar 

  41. J.K. Tien, S.V. Nair, and V.C. Cardone:Flow and Fracture at Elevated Temperatures, R. Raj, ed., ASM, Metals Park, OH, 1985, pp. 179–214.

    Google Scholar 

  42. D. Bruce and P. Hancock:J. Inst. Met., 1969, vol. 97, pp. 148–55.

    CAS  Google Scholar 

  43. H. Riedel:Met. Sci., 1982, vol. 16, pp. 569–80.

    Article  Google Scholar 

  44. N.B. Pilling and R.E. Bedworth:J. Inst. Met., 1933, vol. 29, pp. 529- 36.

    Google Scholar 

  45. A. Atkinson:Corros. Sci., 1982, vol. 22, pp. 347–57.

    Article  CAS  Google Scholar 

  46. M. Schutze:Oxid. Met., 1985, vol. 24, pp. 199–232.

    Article  Google Scholar 

  47. J. Bressers, U. Schusser, and B. Ilschener:Low Cycle Fatigue and Elasto-Plastic Behaviour of Metals, K.T. Rie, ed., Elsevier Applied Science, London, 1987, pp. 365–70.

    Google Scholar 

  48. J. Barbehon, A. Rahmel, and M. Schutze:Low Cycle Fatigue and Elasto-Plastic Behavior of Metals, K.T. Rie, ed., Elsevier Applied Science, London, 1987, pp. 371–77.

    Google Scholar 

  49. L.F. Coffin, Jr.:Metall. Trans., 1974, vol. 5, pp. 1053–60.

    Article  CAS  Google Scholar 

  50. H.D. Solomon and L.F. Coffin, Jr.: ASTM STP 520, 1973, pp. 112-22.

  51. B. Kempf, K. Bothe, and V. Gerold:Fracture Control of Engineering Structures, Proc. Eur. Conf. on Fracture, ECF 6, H.C. Van Elst and A. Bakker, eds., EMAS, Warley, United Kingdom, 1986, vol. II, pp. 1129–35.

    Google Scholar 

  52. P. Rodriguez and K. Bhanu Sankara Rao:Progr. Mater. Sci., 1993, vol. 37, pp. 403–80.

    Article  CAS  Google Scholar 

  53. R.H. Bricknell and D.A. Woodford:Metall. Trans. A, 1981, vol. 12A, pp. 425–33.

    Google Scholar 

  54. B.F. Dyson:Acta Metall., 1982, vol. 30, pp. 1639–46.

    Article  CAS  Google Scholar 

  55. D.M.R. Taplin, N.Y. Tang, and H.H.E. Leipholz:Advances in Fracture Research, Proc. 6th Int. Conf. on Fracture, ICF6, New Delhi, India, Dec. 1984, S.R. Valluri, ed., Pergmon Press, Oxford, 1984, vol. 1, pp. 129–47.

    Google Scholar 

  56. R. Raj:Acta Metall., 1982, vol. 30, pp. 1259–68.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from the Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhanu Sankara Rao, K., Schiffers, H., Schuster, H. et al. Temperature and strain-rate effects on low-cycle fatigue behavior of alloy 800H. Metall Mater Trans A 27, 255–267 (1996). https://doi.org/10.1007/BF02648404

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648404

Keywords

Navigation