Skip to main content
Log in

Correlation of hyaluronic acid accumulation and the growth of preneoplastic mammary cells in collagen: A lonitudinal study

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Hyaluronic acid accumulation is characteristic of mammary tumor cells, and the amount that accumulates seems to correlate with the degree of malignancy of the producing cells. We have tested directly the relationship between hyaluronic acid accumulation and the replication rate of preneoplastic mammary cells in culture. We used nontumorigenic but immortal CL-S1 mouse mammary cells that were derived from a hyperplastic alveolar nodule. Using a collagen gel culture system, we found clear differences in the growth properties of cells before and after Passages 68 to 70. Late passage cells replicated earlier and faster than early passage cells in collagen and on plastic. The rate of cycling resembled that of tumorigenic mouse mammary cells during the first week of culture. Cells seeded at low densities cycled faster than those seeded at high densities during the second week in culture. Exogenous hyaluronic acid, at 10 to 1000µg/ml, neither enhanced nor inhibited CL-S1 cell growth significantly in collagen, regardless of passage. However, by the third day in collagen, late passage cells produced 7 times more total glycosaminoglycans and 12 times more hyaluronic acid per cell than did early passage cells. Late passage cells also deposited 12 times more labeled hyaluronic acid in the matrix than did early passage cells, on a per-cell basis. After a decline in the deposition of hyaluronic acid in the extracellular matrix, growth ceased. The late passage cells did not grow in soft agar, indicating that they had not become neoplastic spontaneously during passage. However, their accelerated growth rate, coupled with the synthesis and secretion of large amounts of hyaluronic acid into the extracellular matrix, may characterize a distinct step in tumor progression in preneoplastic CL-S1 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alho, A. M.; Underhill, C. B. The hyaluronate receptor is preferentially expressed in proliferating epithelial cells. J. Cell Biol. 108:1557–1565; 1989.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson, L. W.; Danielson, K. B.; Hosick, H. L. A cell line established from premalignant mouse mammary tissue. In Vitro Cell. Dev. Biol. 15:841–843; 1979.

    Article  CAS  Google Scholar 

  3. Angello, J. C.; Hosick, H. L.; Anderson, L. W. Glycosaminoglycan synthesis by a cell line (CL-S1) established from a preneoplastic mouse mammary outgrowth. Cancer Res. 42:4975–4978; 1982.

    PubMed  CAS  Google Scholar 

  4. Barcellos-Hoff, M. H.; Bissell, M. J. A role for the extracellular matrix in autocrine and paracrine regulation of tissue-specific functions. In: Krey, L. C.; Gulyas, B. J.; McCracken, J. A., eds. Autocrine and paracrine mechanisms in reproductive endocrinology. New York: Plenum Press; 1989:137–155.

    Google Scholar 

  5. Brecht, M.; Mayer, U.; Schlosser, E., et al. Increased hyaluronate synthesis is required for fibroblast detachment and mitosis. Biochem. J. 239:445–450; 1986.

    PubMed  CAS  Google Scholar 

  6. Butler, W. B. Preparing nuclei from cells in monolayer cultures suitable for counting and for following synchronized cells through the cell cycle. Anal. Biochem. 141:70–73; 1984.

    Article  PubMed  CAS  Google Scholar 

  7. Cardiff, R. D.; Aguilar-Cordova, E. Proto-neoplasia revisited: the molecular biology of mouse mammary hyperplasia. Anticancer Res. 8:925–934; 1988.

    PubMed  CAS  Google Scholar 

  8. Choongkittaworn, N.; Hosick, H. L.; Jones, W. In vitro replication potential of serially passaged mammary parenchyma from mice with different reproductive histories. Mech. Ageing Dev. 39:147–175; 1987.

    Article  Google Scholar 

  9. Cohn, R. H.; Cassiman, J.-J.; Bernfield, M. R. Relationship of transformation, cell density and growth control to the cellular distribution of newly synthesized glycosaminoglycan. J. Cell Biol. 71:280–294; 1976.

    Article  PubMed  CAS  Google Scholar 

  10. Comper, W. D.; Laurent, T. C. Physiological functions of connective tissue polysaccharides. Physiol. Rev. 58:255–315; 1978.

    PubMed  CAS  Google Scholar 

  11. Danielson, K. G.; Anderson, L. W.; Hosick, H. L. Selection and characterization in culture of mammary tumor cells with distinctive growth properties in vivo. Cancer Res. 40:1812–1819; 1980.

    PubMed  CAS  Google Scholar 

  12. Das, N. K.; Hosick, H. L.; Nandi, S. Influence of seeding density on multicellular organization and nuclear events in cultures of normal and neoplastic mouse mammary epithelium. JNCI 52:849–855; 1974.

    PubMed  CAS  Google Scholar 

  13. DeLarco, J. E.; Todaro, G. J. Growth factors from murine sarcoma virus-transformed cells. Proc. Natl. Acad. Sci. USA 75:4001–4005; 1978.

    Article  CAS  Google Scholar 

  14. DeOme, K. B.; Faulkin, L. J.; Bern, H. A., et al. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 19:515–520; 1959.

    PubMed  CAS  Google Scholar 

  15. Docherty, R.; Forrester, J. V.; Lackie, J. M., et al. Glycosaminoglycans facilitate the movement of fibroblasts through three-dimensional collagen matrices. J. Cell. Sci. 92:263–270; 1989.

    PubMed  CAS  Google Scholar 

  16. Ehmann, U. K.; Guzman, R. C.; Osborn, R. C., et al. Cultured mouse mammary epithelial cells: normal phenotype after implantation. JNCI 78:751–757; 1987.

    PubMed  CAS  Google Scholar 

  17. Elstad, C. A.; Hosick, H. L. Contribution of the extracellular matrix to growth properties of cells from a preneoplastic outgrowth: possible role of hyaluronic acid. Exp. Cell Biol. 55:313–321; 1987.

    PubMed  CAS  Google Scholar 

  18. Faulkin, L. J., Jr.; DeOme, K. B. Regulation of growth and spacing of gland elements in the mammary fat pad of the C3H mouse. JNCI 24:953–969; 1960.

    PubMed  Google Scholar 

  19. Fisher, M.; Solursh, M. Glycosaminoglycan localization and role in maintenance of tissue spaces in the early chick embryo. J. Embryol. Exp. Morphol. 42:195–207; 1977.

    CAS  Google Scholar 

  20. Goldberg, R. L.; Toole, B. P. Pericellular coat of chick embryo chondrocytes: structural role of hyaluronate. J. Cell Biol. 99:2114–2122; 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Gordon, J. R.; Bernfield, M. R. The basal lamina of the postnatal mammary epithelium contains glycosaminoglycans in a precise ultrastructural organization. Dev. Biol. 74:118–135; 1980.

    Article  PubMed  CAS  Google Scholar 

  22. Green, S. J.; Underhill, C. B. Hyaluronate appears to be covalently linked to the cell surface. J. Cell. Physiol. 134:376–386; 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Hamerman, D.; Sasse, J.; Klagsbrun, M. A cartilage-derived growth factor enhances hyaluronate synthesis and diminishes sulfated glycosaminoglycan synthesis in chondrocytes. J. Cell. Physiol. 127:317–322; 1986.

    Article  PubMed  CAS  Google Scholar 

  24. Hamner, S.; Jones, W.; Starkey, J. R., et al. Growth factor interactions between mouse mammary cell lines cocultured in collagen gels. In Vitro Cell. Dev. Biol. 25:1107–1113; 1989.

    Article  PubMed  CAS  Google Scholar 

  25. Heldin, P.; Laurent, T. C.; Heldin, C. H. Effect of growth factors on hyaluronan synthesis in cultured human fibroblasts. Biochem. J. 258:919–922; 1989.

    PubMed  CAS  Google Scholar 

  26. Henrich, C. J.; Hawkes, S. P. Molecular weight dependence of hyaluronic acid produced during oncogenic transformation. Cancer Biochim. Biophys. 10:257–267; 1989.

    CAS  Google Scholar 

  27. Honda, A.; Iwai, T.; Mori, Y. Insulin-like growth factor I (IGF-I) enhances hyaluronic acid synthesis in rabbit pericardium. Biochim. Biophys. Acta. 1014:305–312; 1989.

    Article  PubMed  CAS  Google Scholar 

  28. Hsu, T. O. Chromosomal evolution in cell populations. Int. Rev. Cytol. 12:69–161; 1961.

    Article  PubMed  CAS  Google Scholar 

  29. Jones, W.; Hosick, H. L. Collagen concentration as a significant variable for growth and morphology of mouse mammary parenchyma in collagen matrix culture. Cell Biol. Int. Rep. 10:277–286; 1986.

    Article  PubMed  CAS  Google Scholar 

  30. Kidwell, W. R.; Mohanam, S.; Salomon, D. S. Growth factor production by mammary tumor cells. In: Medina, D.; Kidwell, W. R.; Heppner, G., et al. eds. Cellular and molecular biology of mammary cancer. New York: Plenum Press; 1987:239–252.

    Google Scholar 

  31. Kimata, K.; Honma, Y.; Okayama, M., et al. Increased synthesis of hyaluronic acid by mouse mammary carcinoma cell variants with high metastatic potential. Cancer Res. 43:1347–1354; 1983.

    PubMed  CAS  Google Scholar 

  32. Knudson, C. B.; Knudson, W. Similar epithelial-stromal interactions in the regulation of hyaluronate production during limb morphogenesis and tumor invasion. Cancer Lett. 52:113–122; 1990.

    Article  PubMed  CAS  Google Scholar 

  33. Matuoka, K.; Namba, M.; Mitsui, Y. Hyaluronate synthetase inhibition by normal and transformed human fibroblasts during growth reduction. J. Cell Biol. 104:1105–1115; 1987.

    Article  PubMed  CAS  Google Scholar 

  34. McDonald, J. A. Receptors for extracellular matrix components. Am. J. Physiol. 257:L331–337; 1989.

    PubMed  CAS  Google Scholar 

  35. Medina, D. The preneoplastic state in mouse mammary tumorigenesis. Carcinogenesis 9:1113–1119; 1988.

    Article  PubMed  CAS  Google Scholar 

  36. Morris, D. W.; Cardiff, R. D. Multistep model of mouse mammary tumor development. In: Klein, G., ed. Advances in viral oncology, vol. 7. New York: Raven Press; 1987:123–140.

    Google Scholar 

  37. Moscatelli, D.; Rubin, H. Increased hyaluronic acid production on stimulation of DNA synthesis in chick embryo fibrolasts. Nature 254:65–66; 1975.

    Article  PubMed  CAS  Google Scholar 

  38. Nowell, P. C. Mechanisms of tumor progression. Cancer Res. 46:2203–2207; 1986.

    PubMed  CAS  Google Scholar 

  39. Parry, G.; Lee, E. Y-H.; Farson, D., et al. Collagenous substrata regulate the nature and distribution of glycosaminoglycans produced by differentiated cultures of mouse mammary epithelial cells. Exp. Cell Res. 156:487–499; 1985.

    Article  PubMed  CAS  Google Scholar 

  40. Pitelka, D. R.; Hamamoto, S. T.; Duafala, J. G., et al. Cell contacts in the mouse mammary gland. I. Normal gland in postnatal development and the secretory cycle. J. Cell Biol. 56:757–818; 1973.

    Article  Google Scholar 

  41. Prehm, P. Hyaluronic acid is synthesized at plasma membranes. Biochem. J. 220:597–600; 1984.

    PubMed  CAS  Google Scholar 

  42. Richards, J.; Pasco, D.; Yang, J., et al. Comparison of the growth of normal and neoplastic mouse mammary cells on plastic, on collagen gels and in collagen gels. Exp. Cell Res. 146:1–14; 1983.

    Article  PubMed  CAS  Google Scholar 

  43. Ruoslahti, E. Proteoglycans in cell regulation. J. Biol. Chem. 264:13369–13372; 1989.

    PubMed  CAS  Google Scholar 

  44. Saarni, H.; Tammi, M. A rapid method for separation and assay of radiolabeled mucopolysaccharides from cell culture medium. Anal. Biochem. 81:40–46; 1977.

    Article  PubMed  CAS  Google Scholar 

  45. Smith, G. H.; Vonderhaar, B. K.; Graham, D. E., et al. Expression of pregnancy-specific genes in preneoplastic mouse mammary tissues from virgin mice. Cancer Res. 44:3426–3437; 1984.

    PubMed  CAS  Google Scholar 

  46. Smith, H. S. The biology of human mammary epithelium in culture: the path from viral transformation to human cancer. In: Campisi, J.; Cunningham, D. D.; Inouye, M., et al., eds. Perspectives on cellular regulation: from bacteria to cancer. New York: Wiley-Liss, Inc.; 1991:225–234.

    Google Scholar 

  47. Todaro, G. J.; Green, H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17:299–313; 1963.

    Article  PubMed  CAS  Google Scholar 

  48. Tomida, M.; Koyama, H.; Ono, T. Effects of adenosine 3′:5′ cyclic monophosphate and serum on synthesis of hyaluronic acid in confluent rat fibroblasts. Biochem. J. 162:539–543; 1977.

    PubMed  CAS  Google Scholar 

  49. Turley, E. A.; Erickson, C. A.; Tucker, R. P. The retention and ultrastructural appearances of various extracellular matrix molecules incorporated into three-dimensional hydrated collagen lattices. Dev. Biol. 109:347–369; 1985.

    Article  PubMed  CAS  Google Scholar 

  50. Turley, E. A. Hyaluronic acid stimulates protein kinase activity in intact cells and in an isolated protein complex. J. Biol. Chem. 264:8951–8955; 1989.

    PubMed  CAS  Google Scholar 

  51. Van Straaten, H. W. M.; Hooper, K. C.; Bernfield, M. Hyaluronan disappears intercellularly and appears at the basement membrane region during formation of embryonic epithelia. Dev. Growth & Differ. 32:505–511; 1990.

    Article  Google Scholar 

  52. Venkateswaran, V.; Hosick, H. L. Assay of ligand receptors on membranes of epithelial cells cultured in three-dimensional matrices. J. Tiss. Cult. Meth. 13:261–264; 1991.

    Article  Google Scholar 

  53. Yang, J.; Richards, J.; Bowman, P., et al. Sustained growth in primary culture of normal mammary epithelial cells embedded in collagen gels. Proc. Natl. Acad. Sci. USA 77:2088–2092; 1980.

    Article  PubMed  CAS  Google Scholar 

  54. Yoneda, M.; Yamagata, M.; Suzuki, S., et al. Hyaluronic acid modulates proliferation of mouse dermal fibroblasts in culture. J. Cell Sci. 90:265–273; 1988.

    PubMed  CAS  Google Scholar 

  55. Yoneda, M.; Shimizu, S.; Nishi, Y., et al. Hyaluronic acid-dependent change in the extracellular matrix of mouse dermal fibroblasts that is conductive to cell proliferation. J. Cell Sci. 90:275–286; 1988.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hitzeman, J., Woost, P.G. & Hosick, H.L. Correlation of hyaluronic acid accumulation and the growth of preneoplastic mammary cells in collagen: A lonitudinal study. In Vitro Cell Dev Biol - Animal 28, 284–292 (1992). https://doi.org/10.1007/BF02634245

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634245

Key words

Navigation