Skip to main content
Log in

Differentiation of immortalized epithelial cells derived from cystic fibrosis airway submucosal glands

  • Growth, Differentiation, And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Cystic fibrosis (CF) involves abnormalities in mucus production and secretion of the airway. Studies of the regulation of airway mucin production and secretion has been difficult due to the lack of in vitro models of the airway epithelial cells which express functional differentiation. Because the majority of the mucin in the airway is apparently produced by the submucosal glands, we have focused our attention on the development of cell culture models of human airway submucosal glands. This report describes the propagation of CF airway submucosal gland epithelial cells which continue to express mucin production. The CF bronchus was obtained from a 31-yr-old patient who received a double lung transplant. The glands were dissected out and primary cultures prepared by the explant/outgrowth procedure. The cells were immortalized by infection with Adl2-SV40 hybrid virus. The cultures are maintained in serum-free keratinocyte basal medium supplemented with insulin (5µg/ml), hydrocortisone (0.5µg/ml), epidermal growth factor (10 ng/ml), bovine pituitary extract (25µg/ml), and antibiotics. Cultures were passaged using 0.125% trypsin in Ca+2 and Mg+2-free Hanks’, balanced salt solution. Polymerase chain reaction (PCR) analysis demonstrated that the cells were homozygous for the ΔF508 mutation. Morphologic observations showed that the cells were epithelial and were interconnected by sparsely distributed desmosomes. Their cytoplasm contained secretory-type structures including abundant Golgi, rough endoplasmic reticulum, and secretory vesicles. Immunofluorescent studies determined that all cells were positive for cytokeratins, mucin glycoconjugates, and cystic fibrosis transmembrane conductance regulator. The cultures secreted substantial amounts of mucin glycoproteins and expressed the MUC-2 mucin gene. Patch clamp experiments revealed that the cells expressed defective Cl channels which were not activated by Forskolin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M. P.; Gregory, R. J.; Thompson, S., et al. Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253:202–205; 1991.

    Article  PubMed  CAS  Google Scholar 

  2. Aviv, H.; Leder, P. Purification of biologically active globin messenger RNA by an oligothymidylic acid cellulose. Proc. Natl. Acad. Sci. USA 69:1408–1412; 1972.

    Article  PubMed  CAS  Google Scholar 

  3. Ballabio, A.; Gibbs, R. A.; Caskly, C. T. PCR test for cystic fibrosis deletion. Nature 343:220; 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Basbaum, C. B.; Finkbeiner, W. E. Airway secretions: a cell specific analysis. Horm. Metab. Res. 20:661–667; 1988.

    Article  PubMed  CAS  Google Scholar 

  5. Berschneider, H. M.; Knowles, M. R.; Azizkhan, R. G., et al. Altered intestinal chloride transport in cystic fibrosis. FASEB J. 2:2625–2629; 1988.

    PubMed  CAS  Google Scholar 

  6. Bradbury, N. A.; Jilling, T.; Berta, G., et al. Regulation of plasma membrane recycling by CFTR. Science 256:530–532; 1992.

    Article  PubMed  CAS  Google Scholar 

  7. Cheng, S. H.; Gregory, R. J.; Marshall, J., et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63:827–834; 1990.

    Article  PubMed  CAS  Google Scholar 

  8. Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159; 1987.

    Article  PubMed  CAS  Google Scholar 

  9. Chopra, D. P.; Shoemaker, R. L.; Taylor, G. W., et al. Characterization of epithelial cell cultures derived from human tracheal glands. In Vitro Cell. Dev. Biol. 27:13–20; 1991.

    PubMed  CAS  Google Scholar 

  10. Chopra, D. P.; Taylor, G. W.; Mathieu, P. A., et al. Immortalization of human tracheal gland epithelial cells by adenovirus 12-SV40 hybrid virus. In Vitro Cell. Dev. Biol. 27A:763–765; 1991.

    PubMed  CAS  Google Scholar 

  11. Christian, B. J.; Loretz, L. J.; Oberley, T. D., et al. Characterization of human uroepithelial cells immortalizedin vitro by simian virus 40. Cancer Res. 47:6066–6073; 1987.

    PubMed  CAS  Google Scholar 

  12. Collins, F. S. Cystic fibrosis: molecular biology and therapeutic implications. Science 256:774–779; 1992.

    Article  PubMed  CAS  Google Scholar 

  13. Cozens, A. L.; Yezzi, M. J.; Chin, L., et al. Characterization of immortal cystic fibrosis tracheobronchial gland epithelial cells. Proc. Natl. Acad. Sci. USA 89:5171–5175; 1992.

    Article  PubMed  CAS  Google Scholar 

  14. Dovey, M.; Wisseman, C. L.; Roggli, V. L., et al. Ultrastructural morphology of the lung in cystic fibrosis. J. Submicrosc. Cytol. Pathol. 21:521–534; 1989.

    PubMed  CAS  Google Scholar 

  15. Frizzell, R. A.; Rechkemmer, G.; Shoemaker, R. L. Altered regulation of airway epithelial cell chloride channels in cystic fibrosis. Science 233:558–560; 1986.

    Article  PubMed  CAS  Google Scholar 

  16. Gasser, K. W.; DiDomenico, J.; Hopfer, U. Secretagogues activate chloride transport pathways in pancreatic zymogen granules. Am. J. Physiol. 254:G93–99; 1988.

    PubMed  CAS  Google Scholar 

  17. Gregory, R. J.; Rich, D. P.; Cheng, S. H., et al. Maturation and function of cystic fibrosis transmembrane conductance regulator variants bearing mutations in putative nucleotide-binding domains 1 and 2. Mol. Cell. Biol. 11:3886–3893; 1991.

    PubMed  CAS  Google Scholar 

  18. Gum, J. R.; Byrd, J. C.; Hicks, J. W., et al. Molecular cloning of human intestinal mucin cDNA’s: sequence analysis and evidence for genetic polymorphism. J. Biol. Chem. 264:6480–6487; 1989.

    PubMed  CAS  Google Scholar 

  19. Gum, J. R.; Hicks, J. W.; Swallow, D. M., et al. Molecular cloning of cDNAs derived from a novel human intestinal mucin gene. Biochem. Biophys. Res. Comm. 171:407–415; 1990.

    Article  PubMed  CAS  Google Scholar 

  20. Hamill, O. P.; Marty, A.; Neher, E., et al. Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflugers Arch. Eur. J. Physiol. 391:85–100; 1981.

    Article  CAS  Google Scholar 

  21. Jefferson, D. M.; Valentich, J. D.; Marini, F. C., et al. Expression of normal and cystic fibrosis phenotypes by continuous airway epithelial cell lines. Am. J. Physiol. 259:L496-L505; 1990.

    PubMed  CAS  Google Scholar 

  22. Jetten, A. M.; Yankaskas, J. R.; Stutts, M. J., et al. Persistence of abnormal chloride conductance regulation in transformed cystic fibrosis epithelia. Science 244:1472–1475; 1989.

    Article  PubMed  CAS  Google Scholar 

  23. Johnson, J. P.; Louie, E.; Lewiston, N. J., et al.β-Adrenergic sweat responses in cystic fibrosis heterozygotes with and without the ΔF508 allele. Pediatr. Res. 29:525–528; 1991.

    PubMed  CAS  Google Scholar 

  24. Kartner, N.; Hanrahan, J. W.; Jensen, T. J., et al. Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produces a regulated anion conductance. Cell 64:681–691; 1991.

    Article  PubMed  CAS  Google Scholar 

  25. Kerem, B.-S.; Rommens, J. M.; Buchanan, J. A., et al. Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080; 1989.

    Article  PubMed  CAS  Google Scholar 

  26. Knowles, M.; Gatzy, J.; Boucher, R. Relative ion permeability of normal and cystic fibrosis nasal epithelium. J. Clin. Invest. 71:1410–1417; 1983.

    PubMed  CAS  Google Scholar 

  27. Maniatis, T.; Fritsch, E. F.; Sambrook, J. Molecular cloning: a laboratory manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratories; 1982.

    Google Scholar 

  28. Melber, K.; Zhu, G.; Diamond, L. SV40-transformed human melanocyte sensitivity to growth inhibition by the phorbal ester 12-O-tetradecanoylphorboal-13-acetate. Cancer Res. 49:3650–3655; 1989.

    PubMed  CAS  Google Scholar 

  29. Pollard, H. B.; Pazoles, C. J.; Creutz, C. E., et al. An osmotic mechanism for exocytosis from disassociated Chromaffin cells. J. Biol. Chem. 259:1114–1121; 1984.

    PubMed  CAS  Google Scholar 

  30. Quinton, P. M. Chloride impermeability in cystic fibrosis. Nature 301:421–422; 1983.

    Article  PubMed  CAS  Google Scholar 

  31. Rae, J. L.; Cooper, K. New techniques for the study of lens electrophysiology. Exp. Eye Res. 50:603–614; 1990.

    Article  PubMed  CAS  Google Scholar 

  32. Riordan, J. R.; Rommens, J. M.; Kerem, B.-S., et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073; 1989.

    Article  PubMed  CAS  Google Scholar 

  33. Rommens, J. M.; Iannuzzi, M. C.; Kerem, B.-S.; et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059–1065; 1989.

    Article  PubMed  CAS  Google Scholar 

  34. Sack, G. H., Jr. Human cell transformation by simian virus 40: a review. In Vitro 17:1–19; 1981.

    Article  PubMed  CAS  Google Scholar 

  35. Sato, K.; Sato, F. Defective beta adrenergic response of cystic fibrosis sweat glandsin vivo andin vitro. J. Clin. Invest. 73:1763–1771; 1984.

    Article  PubMed  CAS  Google Scholar 

  36. Scholte, B. J.; Kansen, M.; Hoogeveen, A. T., et al. Immortalization of nasal polyp epithelial cells from cystic fibrosis patients. Exp. Cell. Res. 182:559–571; 1989.

    Article  PubMed  CAS  Google Scholar 

  37. Sturgess, J. M.; Imrie, J. Quantitative evaluation of the development of the tracheal submucosal glands in infants with cystic fibrosis and control infants. Am. J. Pathol. 106:303–311; 1982.

    PubMed  CAS  Google Scholar 

  38. Taylor, C. J.; Baxter, P. S.; Hardcastle, J., et al. Failure to induce secretion in jejunal biopsies from children with cystic fibrosis. Gut 29:957–962; 1988.

    PubMed  CAS  Google Scholar 

  39. Taylor, G. W.; Chopra, D. P. Adrenergic and cholinergic stimulation of human transformed tracheal gland epithelial cellsin vitro. Toxicologist 11:226; 1991.

    Google Scholar 

  40. Taylor G. W.; Chopra, D. P.; Mathieu, P. A. Differences in secretory profiles of epithelial cell cultures derived from human tracheal, bronchial and submucosal glands. Epith. Cell Biol. 2:163–169; 1993.

    CAS  Google Scholar 

  41. Taylor-Papadimitriou, J.; Purkis, P.; Lane, E. B., et al. Effects of SV40 transformation on the cytoskeleton and behavioral properties of human keratinocytes. Cell Differ. 11:169–180; 1982.

    Article  PubMed  CAS  Google Scholar 

  42. Welsh, M. J.; Liedtke, C. M. Chloride and potassium channels in cystic fibrosis airway epithelium. Nature 322:467–470; 1986.

    Article  PubMed  CAS  Google Scholar 

  43. Zeitlin, P. L.; Lu, L.; Rhim, J., et al. A cystic fibrosis bronchial cell line: immortalization by Adeno-12-SV40 infection. Am. J. Respir. Cell. Mol. Biol. 4:313–319; 1991.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chora, D.P., Reddy, L., Gupta, S.K. et al. Differentiation of immortalized epithelial cells derived from cystic fibrosis airway submucosal glands. In Vitro Cell Dev Biol - Animal 30, 539–546 (1994). https://doi.org/10.1007/BF02631327

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631327

Key words

Navigation