Skip to main content
Log in

Long-term and residual melanotropin-stimulated tyrosinase activity in S91 melanoma cells is density dependent

  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Cell density is a factor that affects the capacity of Cloudman S91 melanoma cells to respond to melanotropins in monolayer culture. Continuous exposure of melanoma cells to α-melanotropin or its potent analog [Nle4,D-Phe7]-α-MSH, resulted in maximal stimulation of tyrosinase after 2 d of treatment, but the magnitude of stimulation decreased thereafter despite the continued presence of the melanotropins. However, when melanoma cells continually exposed to melanotropins were subcultured to an initial low cell density and maintained in contact with α-MSH or [Nle4,D-Phe7]-α-MSH (long-term culture), tyrosinase activity was rapidly restored and greatly enhanced. Also, when cells were seeded at initial densities ranging from 0.2 to 3.2×106 cells/flask, and exposed for 24 h to 10−7 M α-MSH, only the cultures seeded at low densities (0.2 and 0.4×106 cells/flask) exhibited maximal tyrosinase activity during the 24 h exposure to the melanotropins. Therefore, tyrosinase activity was primarily affected by cell density rather than by the duration of time the cells were in culture or by continuous exposure to melanotropin. Other flasks of various cell densities were treated with 10−7 M α-MSH or [Nle4,D-Phe7]-α-MSH for 24 h, followed byremoval of the melanotropins from the culture medium. The magnitude and duration of theresidual stimulation of melanoma tyrosinase activity by melanotropins were also found to be dependent on the initial cell density. These results reveal that there is a limited range of optimal cell densities at which melanoma cells can respond to melanotropins and express increased tyrosinase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdel Malek, Z. A.; Hadley, M. E.; Bregman, M. D., et al. Actions of melanotropins on melanoma cell growth in vitro. JNCI in press; 1985.

  2. Castrucci, A. M. de L.; Hadley, M. E.; Hruby, V. J. Melanotropin bioassays;in vitro andin vivo comparisons. Gen. Comp. Endocrinol. 55:104–111; 1984.

    Article  PubMed  CAS  Google Scholar 

  3. Castrucci, A. M. de L.; Hadley, M. E.; Sawyer, T. K., et al. Enzymological studies of melanotropins. Comp. Biochem. Physiol. 78B:519–524; 1984.

    Google Scholar 

  4. Castrucci, A. M. de L.; Hadley, M. E.; Yorulmazoglu, E. I., et al. Synthesis and studies of superpotent melanotropins resistant to enzyme degradation. Bagnara, J.; Klaus, S. N.; Paul, E., et al., eds. Biological, Molecular and clinical aspects of pigmentation. Pigment Cell 1985. Tokyo: University of Tokyo Press; 1985: 145–151.

    Google Scholar 

  5. Chian, L. T. Y.; Wilgram, G. F. Tyrosinase inhibition: its role in suntanning and in albinism. Science 155:198–200; 1967.

    Article  PubMed  CAS  Google Scholar 

  6. Fuller, B. B.; Viskochil, D. H. The role of RNA and protein synthesis in mediating the action of MSH on mouse melanoma cells. Life Sci. 24:2405–2416; 1979.

    Article  PubMed  CAS  Google Scholar 

  7. Fuller, B. B.; Lebowitz, J. Decay of hormone responsiveness in mouse melanoma cells in cultures as a function of cell density. J. Cell. Physiol. 103:279–287; 1980.

    Article  PubMed  CAS  Google Scholar 

  8. Hadley, M. E. The melanotropins. In: Endocrinology. New Jersey: Prentice-Hall, Inc; 1984:160–178.

    Google Scholar 

  9. Hadley, M. E.; Abdel Malek, Z. A.; Marwan, M. M., et al. [Nle4,D-Phe7]-α-MSH: a superpotent melanotropin that “irreversibly” activates melanoma cell tyrosinase. Endocrin. Res. in press; 1985.

  10. Marwan, M. M.; Abdel Malek, Z. A.; Kreutzfeld, K. L., et al. Stimulation of S91 melanoma tyrosinase activity by superpotent α-melanotropins. Mol. Cell. Endocrinol. 41:171–177; 1985.

    Article  PubMed  CAS  Google Scholar 

  11. Meyskens, F. L.; Thomson, S. P.; Hickie, R. A., et al. Potential biological explanation of stimulation of colony growth in semisolid agar by cytotoxic agents. Br. J. Cancer 48:863–868; 1983.

    PubMed  CAS  Google Scholar 

  12. Oikawa, A.; Nakayasu, M.; Claunch, C., et al. Two types of melanogenesis in monolayer cultures of melanoma cells. Cell Differ. 1:149–155; 1972.

    Article  PubMed  CAS  Google Scholar 

  13. Oikawa, A.; Nakayasu, M.; Nogara, M. Tyrosinase activities of cell-free extracts and living cells of cultured melanoma cells. Dev. Biol. 30:198–205; 1973.

    Article  PubMed  CAS  Google Scholar 

  14. Pawelek, J. Factors regulating growth and pigmentation of melanoma cells. J. Invest. Dermatol. 66:201–209; 1976.

    Article  PubMed  CAS  Google Scholar 

  15. Pawelek, J. M.; Körner, A. M. The biosynthesis of mammalian melanin. Am. Sci. 70:136–145; 1982.

    PubMed  CAS  Google Scholar 

  16. Pomerantz, S. H. The tyrosine hydroxylase activity of mammalian tyrosinase. J. Biol. Chem. 241:161–168; 1966.

    PubMed  CAS  Google Scholar 

  17. Pomerantz, S. H.l-tyrosine-3,5-3H assay for tyrosinase development in skin of new born hamsters. Science 164:838–839; 1969.

    Article  PubMed  CAS  Google Scholar 

  18. Sawyer, T. K.; Sanfilippo, P. J.; Hruby, V. J., et al. 4-Norleucine, 7-d-Phenylalanine α-melanocyte stimulating hormone: a highly potent melanotropin with ultralong biological activity. Proc. Natl. Acad. Sci. USA 77:5754–5758; 1980.

    Article  PubMed  CAS  Google Scholar 

  19. Sawyer, T. K.; Hruby, V. J.; Wilkes, B. C., et al. Comparative biological activity of highly potent active-site analogues of α-melanotropin. J. Med. Chem. 251:1022–1027; 1982.

    Article  Google Scholar 

  20. Sawyer, T. K.; Hruby, V. J.; Hadley, M. E., et al. α-Melanocyte stimulating hormone: chemical nature and mechanism of action. Am. Zool. 23:529–540; 1983.

    CAS  Google Scholar 

  21. Thomson, S. P.; Moon, T. E.; Meyskens, F. L., Jr. Kinetics of clonogenic melanoma cell proliferation and the limits on growth within a bilayer agar system. J. Cell. Physiol. 121:114–124; 1984.

    Article  PubMed  CAS  Google Scholar 

  22. Varga, J. M.; DiPasquale, A.; Pawelek, J., et al. Regulation of melanocyte stimulating hormone action at the receptor level: discontinuous binding of hormone to synchronized mouse melanoma cells during the cell cycle. Proc. Natl. Acad. Sci. USA 71:1590–1593; 1974.

    Article  PubMed  CAS  Google Scholar 

  23. Wade, D. R.; Burkart, M. E. The role of adenosine 3′,5′-cyclic monophosphate in the density-dependent regulation of growth and tyrosinase activity of B-16 melanoma cells. J. Cell. Physiol. 94:265–274; 1978.

    Article  PubMed  CAS  Google Scholar 

  24. Wong, G.; Pawelek, J. Control of phenotypic expression of cultured melanoma cells by melanocyte stimulating hormones. Nature 241:213–215; 1973.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel Malek, Z.A., Kreutzfeld, K.L., Hadley, M.E. et al. Long-term and residual melanotropin-stimulated tyrosinase activity in S91 melanoma cells is density dependent. In Vitro Cell Dev Biol 22, 75–81 (1986). https://doi.org/10.1007/BF02623536

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623536

Key words

Navigation