Skip to main content
Log in

Keratinocytes grown at the air-liquid interface

  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

A procedure is described which allows primary cultures of rat keratinocytes grown at the liquid-air interface to develop and maintain multilayered strata and to produce highly keratinized sheets morphologically similar to those seen in epidermis in situ. Various substrata were tested and compared as to their ability to support growth and stratification of keratinocytes. It was found that when cultured on plastic surfaces, keratinocytes adhered tightly to the substratum and produced a confluent monolayer that later stratified to two to three layers. Cells plated on Vitrogen 100 collagen failed to reach confluence and, in addition, exhibited the “clustering” phenomenon and deterioration of collagen after 3 to 4 d of growth. Significantly better attachment and spreading were observed for cells grown on rat-tail collagen as compared with plastic and Vitrogen 100 collagen. The best results, including maximal and uniform stratification, were seen in cells grown on a mixture, of rat-tail and Vitrogen 100 collagens.

The system that was developed in the present study offers a model for use in the study of epidermal toxicity from topically applied environmental chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barnes, D. Attachment factors in cell culture. In: Mather, J. P., ed. Mammalian cell culture. New York: Plenum Press; 1984:195–237.

    Google Scholar 

  2. Barnes, D.; Sato, G. Serum free cell culture: a unifying approach. Cell 22:649–655; 1980.

    Article  PubMed  CAS  Google Scholar 

  3. Bottenstein, J. E.; Sato, G. H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc. Natl. Acad. Sci. USA 76:514–517; 1979.

    Article  PubMed  CAS  Google Scholar 

  4. Brabec, R. K.; Peters, B. P.; Bernstein, I. A., et al. Differential lectin binding to cellular membranes in the epidermis of the newborn rat. Proc. Natl. Acad. Sci. USA 77:477–479; 1980.

    Article  PubMed  CAS  Google Scholar 

  5. Burwen, J. Jo.; Pitelka, D. R. Secretory function of lactating mouse mammary epithelial cells cultured on collagen gels. Exp. Cell Res. 126:249–262; 1980.

    Article  PubMed  CAS  Google Scholar 

  6. Chandrakasan, G.; Torchia, D. A.; Piez, K. A. Preparation of intact monomeric collagen from rat-tail tendon and skin and the structure of the nonhelical ends in solution. J. Biol. Chem. 251:6062–6067; 1976.

    PubMed  CAS  Google Scholar 

  7. Dickman, K. G.; Renfro, J. L. Contraction of collagen gels by teleost renal epithelial cells in culture. J. Cell Biol. 97:522; 1983.

    Article  Google Scholar 

  8. Freeman, A. E.; Igel, H.; Herrman, B., et al. Growth and characterization of human skin epithelial cell cultures. In Vitro 12:352–362; 1976.

    PubMed  CAS  Google Scholar 

  9. Fuchs, E.; Green, H. The expression of keratin genes in epidermis and cultured epidermal cells. Cell 15:887–897; 1978.

    Article  PubMed  CAS  Google Scholar 

  10. Fusenig, N. E.; Breitkreutz, D.; Dzarlieva, R. T., et al. Epidermal cell differentiation and malignant transformation in culture. Cancer Forum 6(2):209–240; 1982.

    Google Scholar 

  11. Fusenig, N. E.; Breitkreutz, D.; Dzarlieva, R. T., et al. Growth and differentiation characteristics of transformed keratinocytes from mouse and human skin in vitro and in vivo. J. Invest. Dermatol. 81:168s-175s; 1983.

    Article  PubMed  CAS  Google Scholar 

  12. Fusenig, N. E.; Worst, P. K. M. Mouse epidermal cell cultures: II. Isolation, characterization and cultivation of epidermal cells from perinatal mouse skin. Exp. Cell Res. 93:443–457; 1975.

    Article  PubMed  CAS  Google Scholar 

  13. Gospodarowicz, D.; Delgado, D; Vlodavsky, I. Permissive effect of the extracellular matrix on cell proliferation in vitro. Proc. Natl. Acad. Sci. USA 77:4094–4098; 1980.

    Article  PubMed  CAS  Google Scholar 

  14. Green, M. Terminal differentiation of cultured human epidermal cells. Cell 11:405–416; 1977.

    Article  PubMed  CAS  Google Scholar 

  15. Gross, J. An essay on biological degradation of collagen. In: Hay, E., ed. Cell biology of extracellular matrix. New York: Plenum Press; 1981:217–258.

    Google Scholar 

  16. Grotendorst, G. R.; Seppa, H. E. J.; Kleinman, H. K., et al. Attachment of smooth muscle cells to collagen and their migration toward platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 78:3669–3672; 1981.

    Article  PubMed  CAS  Google Scholar 

  17. Ham, R. G. Importance of the basal nutrient medium in the design of hormonally defined media. In: Sato, G. H.; Pardee, A. B.; Sirbasku, D. A., eds. Cold Spring Harbor Conf. on Cell Proliferation. 9∶39–59; 1982.

  18. Ham, R. G. Survival and growth requirements of nontransformed cells. In: Baserga, I. N., ed. Handbook of Experimental Pharmacology. Springer. New York 57:13–38; 1981.

    Google Scholar 

  19. Hauschka, S. D.; Konigsberg, I. R. The influence of collage on the development of muscle clones. Proc. Natl. Acad. Sci. USA 55:119–126; 1966.

    Article  PubMed  CAS  Google Scholar 

  20. Hennings, H.; Michael, D.; Cheng, C., et al. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19:245–254; 1980.

    Article  PubMed  CAS  Google Scholar 

  21. Holbrook, K. A.; Hennings, H. Phenotypic expression of epidermal cells in vitro: a review. J. Invest. Dermatol. 81:11s-24s; 1983.

    Article  PubMed  CAS  Google Scholar 

  22. Jepsen, A.; MacCallum, D. K.; Lillie, J. H. Fine structure of subcultivated stratified squamous epithelium. Exp. Cell Res. 125:141–152; 1980.

    Article  PubMed  CAS  Google Scholar 

  23. Kitano, Y.; Endo, H. Differentiation of human keratinocytes in cell culture. In: Seiji, M.; Bernstein, I. A., eds. Biochemistry of cutaneous epidermal differentiation. Tokyo: University of Tokyo Press; 1977:319–325.

    Google Scholar 

  24. Kleinman, H. K.; Klebe R. J.; Martin, G. R. Role of collagenous matrices in the adhesion and growth of cells. J. Cell Biol. 88:473–485; 1981.

    Article  PubMed  CAS  Google Scholar 

  25. Kubilus, J.; MacDonald, M. J.; Baden, H. P. Epidermal proteins of cultured human and bovine keratinocytes. Biochem. Biophys. Acta 578:484–492; 1979.

    PubMed  CAS  Google Scholar 

  26. Lewko, W. M.; Loitta, L. A.; Wicha, M. S., et al. Sensitivity ofN-nitrosomethylurea-induced rat mammary tumors to cishydroxyproline, an inhibitor of collagen production., Cancer Res. 41:2855–2862; 1981.

    PubMed  CAS  Google Scholar 

  27. Lillie, J. H.; MacCallum, D. K.; Jepsen, A. Fine structure of subcultivated stratified squamous epithelium grown on collagen rafts. Exp. Cell Res 125:153–165; 1980.

    Article  PubMed  CAS  Google Scholar 

  28. Linsenmayer, T. F. Collagen. In: Hay, E., ed. Cell biology of extracellular matrix. New York: Plenum Press; 1981:5–38.

    Google Scholar 

  29. Liu, S. C.; Eaton, M. J.; Karasek, M. A. Growth characteristics of human epidermal keratinocytes from newborn foreskin in primary and serial cultures. In Vitro 15:813–822; 1979.

    Article  PubMed  CAS  Google Scholar 

  30. Liu, S. C.; Karasek, M. A. Isolation and serial cultivation of rabbit skin epithelial cells. J. Invest. Dermatol. 70:288–293; 1978.

    Article  PubMed  CAS  Google Scholar 

  31. Mackenzie, I. C.; Fusenig N. E. Regeneration of organized epithelial structure. J. Invest. Dermatol. 81:189s-194s; 1983.

    Article  PubMed  CAS  Google Scholar 

  32. Michalopoulos, G.; Pitot, H. C. Primary culture of parenchymal liver cells on collagen membranes. Exp. Cell Res. 94:70–78; 1975.

    Article  PubMed  CAS  Google Scholar 

  33. Mohamed, S. N. W.; Holmes, R.; Hartzell, C. R. A serum-free, chemically-defined medium for function and growth of primary neonatal rat heart cell cultures. In Vitro 19:471–478; 1983.

    Article  PubMed  CAS  Google Scholar 

  34. Miller, D. R.; Hamby, K. M.; Allison, D. P., et al. The maintenance of a differentiated state in cultured mouse epidermal cells. Exp. Cell Res. 129:63–71; 1980.

    Article  PubMed  CAS  Google Scholar 

  35. Olsen, B. R. Collagen biosynthesis. In: Hay, E., ed. Cell biology of extracellular matrix. New York: Plenum Press; 1981:139–178.

    Google Scholar 

  36. Parshley, M. S.; Simms, H. S. Cultivation of adult skin epithelial cells (chicken and human) in vitro. Am. J. Anat. 86:163–189; 1950.

    Article  PubMed  CAS  Google Scholar 

  37. Price, F. M.; Camalier, R. F.; Gantt, R., et al. A new culture medium for human skin epithelial cells. In Vitro 16:147–158; 1980.

    PubMed  CAS  Google Scholar 

  38. Prunieras, M.; Regnier, M.; Woodley, D. Methods for cultivation of keratinocytes with an air-liquid interface. J. Invest. Dermatol. 81:28s-33s; 1983.

    Article  PubMed  CAS  Google Scholar 

  39. Prunieras, M.; Delescluse, C. Epidermal cell culture systems in skin pharmacology. British J. Derm. 3, (Suppl.) 27:43–56; 1984.

    Article  Google Scholar 

  40. Prunieras, M.; Delescluse, C.; Regnier, M. A cell culture model for the study of epidermal (chalone) homeostasis. Pharmacol. Ther. 9:271–295; 1980.

    Article  PubMed  CAS  Google Scholar 

  41. Reaven, E. P.; Cox, A. J. Behavior of adult human skin in organ culture. II. Effects of cellophane tape stripping, temperature, oxygen tension, pH and serum. J. Invest. Dermatol. 50:118–128; 1968.

    PubMed  CAS  Google Scholar 

  42. Reid, L. M.; Jefferson, D. M. Cell culture studies using extracts of extracullular matrix to study growth and differentiation in mammalian cells. In: Mather, J. P., ed. Mammalian cell culture. New York: Plenum Press; 1984:239–280.

    Google Scholar 

  43. Rheinwald, J. G.; Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–344; 1975.

    Article  PubMed  CAS  Google Scholar 

  44. Richards, J.; Guzman, R.; Konrad, M., et al. Growth of mouse mammary gland end buds cultured in a collagen gel matrix. Exp. Cell. Res 141:433–443; 1982.

    Article  PubMed  CAS  Google Scholar 

  45. Smulow, J. B.; Rustigian, R.; Tye, M. Cultivation in vitro of adult human skin and oral mucosa on gelatin film. Proc. Soc. Exp. Biol. Med. 106:757–762; 1961.

    Google Scholar 

  46. Sun, T. T.; Eichner, R.; Nelson, W. G. et al. Keratin classes: Molecular markers for different types of epithelial differentiation. J. Invest. Dermatol. 81∶109s–115s; 1983.

  47. Vaughan, F. L.; Kass, L. L.; Uzman, J. A. Requirement of hydrocortisone and insulin for extended proliferation and passage of rat keratinocytes. In Vitro 17:941–946: 1981.

    Article  PubMed  CAS  Google Scholar 

  48. Wicha, M. S.; Liotta, L. A.; Garbisa, S., et al. Basement membrane collagen requirements for attachment and growth of mammary epithelium. Exp. Cell Res. 124:181–190; 1979.

    Article  PubMed  CAS  Google Scholar 

  49. Wicha, M. S.; Lowrie, G.; Kohn, E., et al. Extracellular matrix promotes mammary epithelial growth and differentiation in vitro. Proc. Natl. Acad. Sci. USA 79:3213–3217; 1982.

    Article  PubMed  CAS  Google Scholar 

  50. Woodcock-Mitchell, J.; Eichner, R.; Nelson, W. G., et al. Immunolocalization of keratin polypeptides in human epidermis using monoclonal antibodies. J. Cell Biol. 95:580–588; 1982.

    Article  PubMed  CAS  Google Scholar 

  51. Yang, J.; Elias, J. J.; Petrakis, N. L., et al. Effects of hormones and growth factors on human mammary epithelial cells in collagen gel culture. Cancer Res. 41:1021–1027; 1981.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was supported by grant 5 T32 AM 07236 and 5 R01 AM 15206 from the National Institutes of Health, contract DAMD17-82-C-2198 from the US Army Medical Research and Development Command, and contract N-2 from the Proctor and Gamble Company The contents of this paper do not represent the opinion of the sponsors nor should findings in this report be construed as their official position.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernstam, L.I., Vaughan, F.L. & Bernstein, I.A. Keratinocytes grown at the air-liquid interface. In Vitro Cell Dev Biol 22, 695–705 (1986). https://doi.org/10.1007/BF02621086

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02621086

Key words

Navigation