Skip to main content
Log in

The recombination activating gene 2 (RAG2) of the rainbow troutOncorhynchus mykiss

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

We have previously described the isolation and expression ofRAG1 in trout to provide an initial understanding regarding the tissues involved inV(D)J recombination of antigen receptors in this teleost. Here we report that the recombination activating gene 2 (RAG2) of rainbow trout has now been cloned and characterized. The rainbow trout genomicRAG2 gene (1602 base pairs) displays an average of 60% and 75% similarity at the nucleotide and amino acid level when compared with clones from other species and was found to contain an acidic region in the carboxyl terminal end, which is typical ofRAG2 sequences. The proximity ofRAG1 and −2 within this teleost is similar to that found in other vertebrates. The genes are convergently transcribed and share a 3′ untranslated (UT) region [2.8 kilobases (kb)] which is much shorter than that found in higher vertebrates (6–8 kb). The entire 3′ UT region was also sequenced and used in conjunction with cDNA clones to identify the polyadenylation sites for bothRAG genes. Northern blot analysis of one-year-old trout demonstrated strong expression ofRAG2 in the thymus, with a much weaker signal being detected in the pronephros. Using reverse transcriptase-polymerase chain reaction, we detected the highest expression of bothRAG1 and −2 in the thymas followed by the pronephros, with much fainter signals being observed in the spleen, mesonephros, and liver. Finally, both genes are expressed in embryos begining at approximately day 10 post-fertilization. Taken together, these findings indicate that the thymus and pronephros most likely serve as the primary lymphoid tissues in trout, based uponRAG expression. In addition, the trout sequences may provide further insight into the evolution and origins of theRAG genes as well as that of the immune system itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. Basic local alignment search tool,J. Mol Biol 215: 403–410, 1990

    PubMed  CAS  Google Scholar 

  • Bengten, E., Leanderson, T., and Pilstrom, L. Immunoglobulin heavy chain cDNA from the teleost Atlantic cod (Gadus morhua L.): nucleotide sequences of secretory and membrane form show an unusual splicing pattern.Eur J Immunol 21: 3027–3033, 1991

    Article  PubMed  CAS  Google Scholar 

  • Berek, C., Berger, A., and Apel, M. Maturation of the immune response in germinal centers.Cell 67: 1121–1129, 1991

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, R. M., Schluter, S. F., Lake, D. F., and Marchalonis, J. J. Evolutionary conservation and molecular cloning of the recombinase activating gene 1.Biochem. Biophys Res Commun 205: 687–692, 1994

    Article  PubMed  CAS  Google Scholar 

  • Carlson, L. M., Oettinger, M. A., Schatz, D. G., Masteller, E. L., Hurley, E. A., McCormack, W. T., Baltimore, D., and Thompson, C. B. Selective expression of RAG-2 in chicken B cells undergoing immunoglobulin gene conversion.Cell 64: 201–208, 1991

    Article  PubMed  CAS  Google Scholar 

  • Castillo, A., Sanchez, C., Dominguez, J., Kaattari, S. L., and Villena, A. J. Ohtogeny of IgM and IgM-bearing cells in rainbow trout.Dev Comp Immunol 17: 419–424, 1993

    Article  PubMed  CAS  Google Scholar 

  • Cuomo, C. A., and Oettinger, M. A. Analysis of regions of RAG-2 important for V(D)J recombination.Nucleic Acids Res 22: 1810–1814, 1994

    Article  PubMed  CAS  Google Scholar 

  • Daggfeldt, A., Bengten, E., and Pilstrom, L. A cluster type organization of the loci of the immunoglobulin light chain in Atlantic cod (Gadus morhua L.) and rainbow trout (Oncorhynchus mykiss Walbaum) indicated by nucleotide sequences of cDNAs and hybridization analysis.Immunogenetics 38: 199–209, 1993

    Article  PubMed  CAS  Google Scholar 

  • Dingwall, C., and Laskey, R. A. Nuclear targeting sequences—a consensus?Trends Biochem Sci 16: 478–481, 1991

    Article  PubMed  CAS  Google Scholar 

  • Ellis, A. E. Omogeny of the immune response inSalmo salar. Histogenesis of the lymphoid organs and appearance of membrane immunoglobulin and mixed leucocyte reactivity.In J. B. Solomon and J. D. Horton (eds.),Developmental Biology, pp. 225–277, Elsevier North Holland Biomed Press, Amsterdam, 1977

    Google Scholar 

  • Frohman, M. A., Dush, M. K., and Martin, G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer.Proc. Natl. Acad Sci USA 85: 8998–9002, 1988

    Article  PubMed  CAS  Google Scholar 

  • Fuschiotti, P., Harindranath, N., Mage, R. G., McCormack, W. T., Dhanarajan, P., and Roux, K. H. Recombination activating genes-1 and −2 of the rabbit: cloning and characterization of germline and expressed genes.Mol Immunol 30: 1021–1032, 1993

    Article  PubMed  CAS  Google Scholar 

  • Gilfillan, S., Dierich, A., Lemeur, M., Benoist, C., and Mathis, D. Mice lacking TdT: mature animals with an immature lymphocyte repertoire.Science 261: 1175–1178, 1993

    Article  PubMed  CAS  Google Scholar 

  • Greenhalgh, P., Olsen, C. E., and Steiner, L. A. Characterization and expression of recombination activating genes (RAG-1 and RAG-2) inXenopus laevis.J Immunol 151: 3100–3110, 1993

    PubMed  CAS  Google Scholar 

  • Hansen, J. D. and Kaattari, S. L. The recombination activation gene 1 (RAG1) of rainbow trout (Oncorhynchus mykiss): cloning, expression, and phylogenetic analysis.Immunogenetics 42: 188–195, 1995

    Article  PubMed  CAS  Google Scholar 

  • Kaattari, S. L., and Irwin, M. J. Salmonid spleen and anterior kidney harbor populations of lymphocytes with different B cell repertoires.Dev Comp Immunol 9: 433–444, 1985

    Article  PubMed  CAS  Google Scholar 

  • Kallenbach, S., Doyen, N., Fanton-d'Andon, M., and Rougeon, F. Three lymphoid-specific factors account for all junctional diversity characteristic of somatic assembly of T-cell receptor and immunoglobulin genes.Proc. Natl Acad Sci USA 89: 2799–2803, 1992

    Article  PubMed  CAS  Google Scholar 

  • Landau, N. R., Schatz, D. G., Rosa, M., and Baltimore, D. Increased frequency of N-region insertion in a murine pre-B-cell line infected with a terminal deoxynucleotidyl transferase retroviral expression vector.Mol Cell Biol 7: 3237–3243, 1987

    PubMed  CAS  Google Scholar 

  • Li, W-H., Gouy, M., Sharp, P. M., O'hUigin, C., and Yang, Y.-W.. Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks.Proc. Natl Acad Sci USA 87: 6703–6707, 1990

    Article  PubMed  CAS  Google Scholar 

  • Li, Z., Otevrel, T., Gao, Y., Cheng, H.-L., Seed, B., Stamoto, T. D., Taccioli, G. E., and Alt, F. W. The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination.Cell 83: 1079–1089, 1995

    Article  PubMed  CAS  Google Scholar 

  • Lin W. C., and Desiderio, S. Cell cycle regulation of V(D)J recombination-activating protein RAG-2.Proc. Natl Acad Sci USA 91: 2733–2737, 1994

    Article  PubMed  CAS  Google Scholar 

  • McBlane, J. F., van Gent, D. C., Ramsden, D. A., Romeo, C., Cuomo, C. A., Gellert, M., and Oettinger, M. A.. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps.Cell 83: 387–395, 1995

    Article  PubMed  CAS  Google Scholar 

  • Oettinger, M. A., Schatz, D. G., Gorka, C, and Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination.Science 248: 1517–1523, 1990

    Article  PubMed  CAS  Google Scholar 

  • Partula, S., de Guerra, A., Fellah, J. S., and Charlemagne, J. Structure and diversity of the T cell antigen receptor beta-chain in a teleost fish.J Immunol 155: 699–706, 1995

    PubMed  CAS  Google Scholar 

  • Pough, H. T., Beiser, J. B., and McFarland, W. N.Vertebrate Life, Macmillan Press, New York, 1989

    Google Scholar 

  • Razquin, B. E., Castillo, A., Lopez-Fierro, P., Alvarez, F., Zapata, A., and Villena, A. J. Ontogeny of IgM-producing cells in the lymphoid organs of rainbow trout,Salmo gairdneri Richardson: an immuno- and enzyme-histochemical study.J Fish Biol 36: 159–173, 1990

    Article  Google Scholar 

  • Renu, J., Gomer, H., and Murtagh, J. J. Increasing specificity from the PCR-RACE technique,J Biotechniques 12: 58–59, 1992

    Google Scholar 

  • Sadofsky, M. J., Hesse, J. E., van-Gent, D. C., and Gellert, M. RAG-1 mutations that affect the target specificity of V(D)J recombination: a possible direct role of RAG-1 in site recognition.Genes Dev 9: 2193–2199, 1995

    PubMed  CAS  Google Scholar 

  • Schatz, D. G., Oettinger, M. A., and Schlissel, M. S. V(D)J recombination: molecular biology and regulation.Annu Rev Immunol 10: 359–383, 1992

    PubMed  CAS  Google Scholar 

  • Silver, D. P., Spanopoulou, E., Mulligan, R. C., and Baltimore, D. Dispensable sequence motifs in the RAG-1 and RAG-2 genes for plasmid V(D)J recombination.Proc. Natl Acad Sci USA 90: 6100–6104, 1993

    Article  PubMed  CAS  Google Scholar 

  • Strauss, W. M. Preparation of genomic DNA from mammalian tissue.In: F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (eds.)Current Protocols in Molecular Biology, Vol. 1, pp 2.2.1–2.2.3, Greene Publishing Associates and Wiley-Interscience, New York, 1989

    Google Scholar 

  • Thompson, C. B. New insights into V(D)J recombination and its role in the evolution of the immune system.Immunity 3: 531–539, 1995

    Article  PubMed  CAS  Google Scholar 

  • Van Gent, D. C., McBlane, J. F., Ramsden, D. A., Sadofsky, M. J., Hesse, J. E., and Gellert, M. Initiation of V(D)J recombination in a cell-free system.Cell 81: 925–934, 1995

    Article  PubMed  Google Scholar 

  • Wilson, M. R., Marcuz, A., van-Ginkel, F., Miller, N. W., Clem, L. W., Middleton, D., and Warr, G. W. The immunoglobulin M heavy chain constant region gene of the channel catfish,Ictalurus punctatus: an unusual mRNA splice pattern produces the membrane form of the molecule.Nucleic Acids Res 18: 5227–5233, 1990

    Article  PubMed  CAS  Google Scholar 

  • Zacksenhaus, E., Bremner, R., Jiang, Z., Gill, R. M., Muncaster, M., Sopta, M., Phillips, R. A., and Gallie, B. L. Unraveling the function of the retinoblastoma gene.Adv Cancer Res 61: 115–141, 1993

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number U31670

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, J.D., Kaattari, S.L. The recombination activating gene 2 (RAG2) of the rainbow troutOncorhynchus mykiss . Immunogenetics 44, 203–211 (1996). https://doi.org/10.1007/BF02602586

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02602586

Keywords

Navigation