Skip to main content
Log in

Objective Bayesian methods for one-sided testing

  • Published:
Test Aims and scope Submit manuscript

Abstract

The one-sided testing problem can be naturally formulated as the comparison between two nonnested models. In an objective Bayesian setting, that is, when subjective prior information is not available, no general method exists either for deriving proper prior distributions on parameters or for computing Bayes factor and model posterior probabilities. The encompassing approach solves this difficulty by converting the problem into a nested model comparison for which standard methods can be applied to derive proper priors.

We argue that the usual way of encompassing does not have a Bayesian justification. and propose a variant of this method that provides an objective Bayesian solution. The solution proposed here is further extended to the case where nuisance parameters are present and where the hypotheses to be tested are separated by an interval. Some illustrative examples are given for regular and non-regular sampling distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger, J. O. andBernardo, J. M. (1992). On the development of the reference prior method. In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, eds.,Bayesian Statististics, vol. 4, pp. 35–60. Oxford University Press, Oxford.

    Google Scholar 

  • Berger, J. O. andMortera, J. (1995). Discussion of O'Hagan.Journal of the Royal Statistical Society. Series B, 57:99–138.

    Google Scholar 

  • Berger, J. O. andMortera, J. (1999). Default Bayes factors for nonnested hypothesis testing.Journal of the American Statistical Association, 94:542–554.

    Article  MATH  MathSciNet  Google Scholar 

  • Berger, J. O. andPericchi, L. R. (1996a). The intrinsic Bayes factor for linear models. In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, eds.,Bayesian Statistic, vol. 5, pp. 23–42. Oxford University Press, Oxford.

    Google Scholar 

  • Berger, J. O. andPericchi, L. R. (1996b). The intrinsic Bayes factor for model selection and prediction.Journal of the American Statistical Association, 91:109–122.

    Article  MATH  MathSciNet  Google Scholar 

  • Berger, J. O. andPericchi, L. R. (1996c). On the justification of default and intrinsic Bayes factor. In J. C. Lee, W. Johnson, and A. Zellner, eds.,Modeling and Prediction, pp. 276–293. Springer-Verlag, New York.

    Google Scholar 

  • Berger, J. O. andPericchi, L. R. (1997). Accurate and stable Bayesian model selection: the median intrinsic Bayes factor.Sankyà, B, 60:1–18.

    MathSciNet  Google Scholar 

  • Berger, J. O. andPericchi, L. R. (1998). On criticism and comparison of default Bayes factors for model selection and hypothesis testing. In W. Racugno, ed.,Proceedings of the Workshop on Model Selection, pp. 1–50. Pitagora, Bologna.

    Google Scholar 

  • Bernardo, J. M. andSmith, A. F. M. (1994).Bayesian Theory. Wiley, New York.

    MATH  Google Scholar 

  • Cano, J. A., Kessler, M., andMoreno, E. (2004). On intrinsic priors for nonnested models.Test, 13(2):445–463.

    Article  MATH  MathSciNet  Google Scholar 

  • Casella, G. andMoreno, E. (2002a). Objective Bayesian of contingency tables. Technical report, Universidad de Granada. Submitted.

  • Casella, G. andMoreno, E. (2002b). Objective Bayesian variable selection. Technical report, Universidad de Granada. Submitted.

  • Casella, G. andMoreno, E. (2005). Intrinsic meta analysis of contingency tables.Statistics in Medicine, 24:583–604.

    Article  MathSciNet  Google Scholar 

  • Cox, D. R. (1961). Test of separate families of hypothesis. In J. Neyman, ed.,Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 105–123. University of California Press. Berkeley.

    Google Scholar 

  • De Santis, F. (2002). Interactive use of default and robust Bayes testing methods in the presence of vague prior information.Journal of the Royal Statistial Society. Series D, 51:451–465.

    Article  Google Scholar 

  • De Santis, F. andSpezzaferri, F. (1999). Methods for default and robust Bayesian model comparison: the fractional Bayes factor approach.International Statistical Review, 67:267–286.

    MATH  Google Scholar 

  • Dmochowski, J. (1996). Intrinsic Bayes factor via Kullback-Leibler geometry. In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, eds.,Bayesian Statistics, vol. 5. Oxford University Press, London.

    Google Scholar 

  • Huber, P. (1967). The behaviour of maximum likelihood estimators under nonstandard conditions. In L. LeCam and N. J., eds.,Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 221–233.

  • Jeffreys, H. (1961).Theory of Probability. Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Moreno, E. (1997). Bayes factor for intrinsic and fractional priors in nested models: Bayesian robustness. In D. Yadolah, ed.,L1-Statistical Procedures and Related Topics, vol. 31 ofLecture Notes-Monograph Series, pp. 257–270. Institute of Mathematical Statistics, Hayward, CA.

    Google Scholar 

  • Moreno, E., Bertolino, F. andRacugno, W. (1998). An intrinsic limiting procedure for model selection and hypotheses testing.Journal of the American Statistical Association, 93:1451–1460.

    Article  MATH  MathSciNet  Google Scholar 

  • Moreno, E., Bertolino, F., andRacugno, W. (1999). Default Bayesian analysis of the Behrens-Fisher problem.Journal of Statistical Planning and Inference, 81:323–333.

    Article  MATH  MathSciNet  Google Scholar 

  • Moreno, E., Bertolino, F., andRacugno, W. (2000). Bayesian model selection approach to analysis of variance under heteroscedasticity.Journal of the Royal Statistical Society. Series D (The Statistician), 46:1–15.

    Google Scholar 

  • Moreno, E. andLiseo, B. (2003). A default Bayesian test for the number of components of a mixture.Journal of Statistical Planning and Inference, 111:129–142.

    Article  MATH  MathSciNet  Google Scholar 

  • Moreno, E., Torres, F., andCasella, G. (2005). Testing the equality of regression coefficients in heteroscedastic normal regression models.Journal of Statistical Planning and Inference, 131:117–134.

    Article  MATH  MathSciNet  Google Scholar 

  • O'Hagan, A. (1995). Fractional Bayes factor for model comparison (with discussion).Journal of the Royal Statistical Society. Series B, 57:99–138.

    MATH  MathSciNet  Google Scholar 

  • O'Hagan, A. (1997). Properties of intrinsic and fractional Bayes factors.Test, 6:101–118.

    Article  MATH  MathSciNet  Google Scholar 

  • San Martini, A. andSpezzaferri, F. (1984). A predictive model selection criterion.Journal of the Royal Statistical Society. Series B, 46:296–303.

    MATH  MathSciNet  Google Scholar 

  • Sansó, B., Pericchi, L. R., andMoreno, E. (1996). On the robustness of the intrinsic Bayes factor for nested models (with discussion). In J. O. Berger, B. Betró, F. Ruggeri, E. Moreno, L. Pericchi, and L. Wasserman, eds.,Bayesian Robustness, vol. 29 ofLecture Notes-Monograph Series, pp. 157–176. Institute of Mathematical Satistics, Hayward, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elías Moreno.

Additional information

This paper has been supported by Ministerio de Ciencia y Tecnología under grant BEC20001-2982

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, E. Objective Bayesian methods for one-sided testing. Test 14, 181–198 (2005). https://doi.org/10.1007/BF02595402

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595402

Key Words

AMS subject classification

Navigation