Skip to main content
Log in

A new algorithm for generalized fractional programs

  • Published:
Mathematical Programming Submit manuscript

Abstract

A new dual problem for convex generalized fractional programs with no duality gap is presented and it is shown how this dual problem can be efficiently solved using a parametric approach. The resulting algorithm can be seen as “dual” to the Dinkelbach-type algorithm for generalized fractional programs since it approximates the optimal objective value of the dual (primal) problem from below. Convergence results for this algorithm are derived and an easy condition to achieve superlinear convergence is also established. Moreover, under some additional assumptions the algorithm also recovers at the same time an optimal solution of the primal problem. We also consider a variant of this new algorithm, based on scaling the “dual” parametric function. The numerical results, in case of quadratic-linear ratios and linear constraints, show that the performance of the new algorithm and its scaled version is superior to that of the Dinkelbach-type algorithms. From the computational results it also appears that contrary to the primal approach, the “dual” approach is less influenced by scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Avriel, W.E. Diewert, S. Schaible, and I. Zang,Generalized Concavity, Mathematical Concepts and Methods in Science and Engineering, Vol. 36 (Plenum, New York, 1988).

    MATH  Google Scholar 

  2. A.I. Barros,Discrete and Fractional, Programming Techniques for Location Models, Tinbergen Institute Research Series, Vol. 89 (Thesis Publishers, Amsterdam, 1995).

    Google Scholar 

  3. A.I. Barros and J.B.G. Frenk, “Generalized fractional programming and cutting plane algorithms”,Journal of Optimization Theory and Applications 87 (1995) 103–120.

    Article  MATH  MathSciNet  Google Scholar 

  4. M.S. Bazaraa, H.D. Sherali and C.M. Shetty,Nonlinear Programming: Theory and Algorithms (Wiley, New York, 2nd ed., 1993).

    MATH  Google Scholar 

  5. Y. Benadada, “Approches de résolution du problème de programmation fractionnaire généralisée,” Ph.D. Thesis (Départment d'Informatique et de Recherche Opérationelle, Université de Montréal, 1989).

  6. A. Ben-Israel, A. Ben-Tal and S. Zlobec,Optimality in Nonlinear Programming (A Feasible Directions Approach) (Wiley, New York, 1981).

    MATH  Google Scholar 

  7. J.C. Bernard and J.A. Ferland, “Convergence of interval-type algorithms for generalized fractional programming,”Mathematical Programming 43 (1989) 349–364.

    Article  MATH  MathSciNet  Google Scholar 

  8. B.D. Craven,Fractional Programming (Heldermann, Berlin, 1988).

    MATH  Google Scholar 

  9. J.P. Crouzeix and J.A. Ferland, “Algorithms for generalized fractional programming,”Mathematical Programming 52 (1991) 191–207.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.P. Crouzeix, J.A. Ferland and S. Schaible, “Duality in generalized linear fractional programming,”Mathematical Programming 27 (1983) 342–354.

    MATH  MathSciNet  Google Scholar 

  11. J.P. Crouzeix, J.A. Ferland and S. Schaible, “An algorithm for generalized fractional programs,”Journal of Optimization Theory and Applications 47 (1985) 35–49.

    Article  MATH  MathSciNet  Google Scholar 

  12. J.P. Crouzeix, J.A. Ferland and S. Schaible, “A note on an algorithm for generalized fractional programs,”Journal of Optimization Theory and Applications 50 (1986) 183–187.

    Article  MATH  MathSciNet  Google Scholar 

  13. W. Dinkelbach, “On nonlinear fractional programming,”Management Science 13 (1967) 492–498.

    MathSciNet  Google Scholar 

  14. J.A. Ferland and J.Y. Potvin, “Generalized fractional programming: Algorithms and numerical experimentation,”European Journal of Operational Research 20 (1985) 92–101.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Flachs, “Generalized Cheney-Loeb-Dinkelbach-type algorithms,”Mathematics of Operations Research 10 (1985) 674–687.

    Article  MATH  MathSciNet  Google Scholar 

  16. J.B. Hiriart-Urruty and C. Lemaréchal,Convex Analysis and Minimization Algorithms I: Fundamentals, Vol. 1 (Springer, Berlin, 1993).

    MATH  Google Scholar 

  17. T. Ibaraki, “Parametric approaches to fractional programs,”Mathematical Programming 26 (1983) 345–362.

    MATH  MathSciNet  Google Scholar 

  18. T. Ibaraki, H. Ishii, J. Iwase, T. Hasegawa and H. Mine, “Algorithms for quadratic fractional programming problems”Journal of the Operations Research Society of Japan 19 (1976) 174–191.

    MATH  MathSciNet  Google Scholar 

  19. R. Jagannathan and S. Schaible, “Duality in generalized fractional programming via Farkas' lemma,”Journal of Optimization Theory and Application 41 (1983) 417–424.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Outrata, H., Schramm and J. Zowe, “Bundle trust methods: Fortran codes for nondifferentiable optimization, User's guide,” Technical Report 269 (Mathematisches Institut, Universität Bayreuth, 1991).

  21. E. Polak, “On the mathematical foundations of nondifferentiable optimization in engineering design,”SIAM Review 29 (1987) 21–89.

    Article  MathSciNet  Google Scholar 

  22. B.N. Pschenichnyi,Necessary Conditions for an Extremum (Marcel Dekker, New York, 1971).

    Google Scholar 

  23. A. Ravindran, “A computer routine for quadratic and linear programming problems,”Communications of the ACM 15 (1972) 818.

    Google Scholar 

  24. A.W. Roberts and D.E. Varberg,Convex Functions (Academic Press, New York, 1973)

    MATH  Google Scholar 

  25. R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, NJ, 1970).

    MATH  Google Scholar 

  26. R.T. Rockafellar, “Generalized subgradients in mathematical programming,” in: A. Bachem, M. Grötschel and B. Korte, eds.,Mathematical Programming. The State of the Art (Springer, Berlin, 1983) ch. 2, pp. 368–390.

    Google Scholar 

  27. S. Schaible, “Fractional programming,”Zeitschrift für Operations Research 27 (1983) 39–54.

    Article  MATH  MathSciNet  Google Scholar 

  28. S. Schaible and T. Ibaraki, “Fractional programming,” (Invited Review),European Journal of Operational Research 12 (1983) 325–338.

    Article  MATH  MathSciNet  Google Scholar 

  29. N.Z. Shor,Minimization Methods for Non-differentiable Functions, Computational Mathematics, Vol. 3 (Springer, Berlin, 1985).

    MATH  Google Scholar 

  30. M. Sion, “On general minimax theorems,”Pacific Journal of Mathematics 8 (1958) 171–176.

    MATH  MathSciNet  Google Scholar 

  31. J. Werner, “Duality in generalized fractional programming,” in: K.H. Hoffman, J.B. Hiriart-Urruty, C. Lemaréchal and J. Zowe, eds.,Trends in Mathematical Optimization, International Series of Numerical Mathematics (Birkhäuser, Basel, 1988) pp. 197–232.

    Google Scholar 

  32. Z. Zhou, F.S. Mokhtarian and S. Zlobec, “A simple constraint qualification in convex programming,”Mathematical Programming 61 (1993) 385–397.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was carried out at the Econometric Institute, Erasmus University, Rotterdam, the Netherlands and was supported by J.N.I.C.T. (Portugal) under contract BD/707/90-RM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barros, A.I., Frenk, J.B.G., Schaible, S. et al. A new algorithm for generalized fractional programs. Mathematical Programming 72, 147–175 (1996). https://doi.org/10.1007/BF02592087

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02592087

Keywords

Navigation