Skip to main content
Log in

Pressure peaking in pulsatile flow through arterial tree structures

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An analytical iterative scheme is presented for computing the local characteristics of pressure and flow waves as they progress along a tree structure and become modified by wave reflections. Results are obtained to illustrate the phenoenon of pressure peaking under two different sets of circumstances. In the first case, the propagation of a single harmonic wave along a simple tree is considered, where wave reflections modify the amplitude of the pressure wave as it travels. In the second case, the propagation of a composite wave along a tree with multiple branches is considered, where wave reflections modify the shape of the wave as it travels and cause it to peak. The results demonstrate unambiguously that the root cause of this phenomenon is wave reflections caused by stepwise decreases in admittance, as has been previously suggested, rather than due to nonlinear interactions, as has also been previously suggested. It is shown clearly that even when wave reflections combine linearly, they lead to considerable peaking in the pressure waveform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Avolio, A. P. Multi-branched model of the human arterial system.Med. Biol. Eng. Comput. 18:709–718, 1980.

    Article  PubMed  CAS  Google Scholar 

  2. Barnard, A. C. L., W. A. Hunt, W. P. Timlake, and E. Varley. Peaking of pressure pulse in fluid-filled tubes of spatially varying compliance.Biophys. J. 6:735–746, 1966.

    PubMed  CAS  Google Scholar 

  3. Duan, B., and M. Zamir (1992) Viscous damping in one dimensional wave transmission.J. Acoust. Soc. Am. 92: 3358–3363, 1992.

    Article  Google Scholar 

  4. Fung, Y. C.Biodynamics: Circulation. New York: Springer-Verlag, 1984.

    Google Scholar 

  5. Helal, M. A., K. C. Watts, A. E. Marble, and S. N. Sarwal. Theoretical model for assessing haemodynamics in arterial networks which include bypass grafts.Med. Biol. Eng. Comput. 28:465–473, 1990.

    Article  PubMed  CAS  Google Scholar 

  6. Karreman, G. Some contributions to the mathematical biology of blood circulation. Reflection of pressure waves in the arterial system.Bull. Math. Biophys. 14:327–350, 1952.

    Article  Google Scholar 

  7. Kouchoukos, N. T., L. C. Sheppard, and D. A. McDonald. Estimation of stroke volume in the dog by a pulse contour method.Circ. Res. 26:611–23, 1970.

    PubMed  CAS  Google Scholar 

  8. Lighthill, M.Mathematical Biofluiddynamics. Philadelphia: Society for Industrial & Applied Mathematics, 1975.

    Google Scholar 

  9. McDonald, D. A.Blood Flow in Arteries. Baltimore: Williams & Wilkins, 1974.

    Google Scholar 

  10. Milnor, W. R.Hemodynamics. Baltimore: Williams & Wilkins, 1989, 419 pp.

    Google Scholar 

  11. Singhal, S., R. Henderson, K. Horsfield, K. Harding, and G. Cumming. Morphometry of the human pulmonary arterial tree.Circ. Res. 33:190–197, 1973.

    PubMed  CAS  Google Scholar 

  12. Strahler, A. N. Revisions of Horton's quantitative factors in erosional terrain.Trans. Am. Geophys. Union 34:345, 1953.

    Google Scholar 

  13. Strahler, A. N. Quantitative analysis of watershed geomorphology.Trans. Am. Geophys. Union 38:913–920, 1957.

    Google Scholar 

  14. Taylor, M. G. An approach to an analysis of the arterial pulse wave 1. Oscillations in an attenuating line.Phys. Med. Biol. 1:258–269, 1957.

    Article  PubMed  CAS  Google Scholar 

  15. Taylor, M. G. An approach to an analysis of the arterial pulse wave II. Fluid oscillations in an elastic pipe.Phys. Med. Biol. 1:321–329, 1957.

    Article  PubMed  CAS  Google Scholar 

  16. Taylor, M. G. The input impedance of an assembly of randomly branching elastic tubes.Biophys. J. 6:29–51, 1966.

    Article  PubMed  CAS  Google Scholar 

  17. Taylor, M. G. Wave transmission through an assembly of randomly branching elastic tubes.Biophys. J. 6:697–716, 1966.

    PubMed  CAS  Google Scholar 

  18. Weibel, E. R.Morphometry of the Human Lung. Berlin: Springer-Verlag, 1963, 151 pp.

    Google Scholar 

  19. Westerhof, N., and A. Noordergraaf. Arterial viscoelasticity: a generalized model-effect on input impedance and wave travel in the systematic tree.J. Biomech. 3:357–379, 1970.

    Article  PubMed  CAS  Google Scholar 

  20. Zamir, M. Optimality principles in arterial branching.J. Theor. Biol. 62:227–251, 1976.

    Article  PubMed  CAS  Google Scholar 

  21. Zamir, M. The branching structure of arterial trees.Comments Theor. Biol. 1:15–37, 1988.

    Google Scholar 

  22. Zamir, M., and S. Phipps. Network analysis of an arterial tree.J. Biomech. 21:25–34, 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Zamir, M., P. Sinclair, and T. H. Wonnacott. Relation between diameter and flow rate in blood vessels.J. Biomech. 25:1303–1310, 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, B., Zamir, M. Pressure peaking in pulsatile flow through arterial tree structures. Ann Biomed Eng 23, 794–803 (1995). https://doi.org/10.1007/BF02584478

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584478

Keywords

Navigation