Skip to main content
Log in

Multilayer x-ray mirrors

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The angular, dispersive, polarization and energy features of multilayer x-ray optics are considered within the framework of unified theoretical approach. The ultimate optical parameters of multilayer structures are investigated, and the possibilities of their application to certain physical problems are discussed. Practical recommendations and techniques for fabrication of x-ray interference mirrors are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Livshits,Electrodinamika Sploshnykh Sred [Continuum Electrodynamics], Nauka, Moscow (1982).

    Google Scholar 

  2. S. V. Gaponov, S. A. Gusev, Yu. Ya. Platonov, and N. N. Salashchenko., “Material selection for multilayer x-ray optic components,”Pis’ma Zh. Tekh. Fiz.,9, 1140 (1983).

    Google Scholar 

  3. S. V. Gaponov, S. A. Gusev, Yu. Ya. Platonov, and N. N. Salashchenko, “Artificial multilayer reflective and selective elements for soft x-rays. Part I. Selection of pairs of materials and calculations of multilayer mirrors,”Zh. Tekh. Fiz.,54, 747 (1984).

    Google Scholar 

  4. A. V. Vinogradov and I. V. Kozhevnikov, “Angular, dispersive, and polarization properties of multilayer mirrors of soft x-ray range,” Preprint of the Lebedev Physical Institute, No. 102, Moscow (1986).

  5. I. V. Kozhevnikov and A. V. Vinogradov, “Basic formulas of XUV multilayer optics,”Phys. Scripta T,17, 137 (1987).

    Article  ADS  Google Scholar 

  6. T. Barbee, Jr., “Multilayer structures in x-ray optics,” in: G. Schmaal and D. Rudolf (eds.),X-Ray Optics and Spectroscopy [Russian translation], Mir, Moscow (1987).

    Google Scholar 

  7. T. W. Barbee, Jr., “Multilayers for x-ray optics,” in:Application of Thin-Film Multilayered Structures to Figured X-Ray Optics, Bellingham, USA, 1985;Proc. SPIE,563, 2 (1985).

    Google Scholar 

  8. P. H. Berning, “Theory and methods of evaluation of the properties of thin films,” in: G. Hass (ed.),Optics of Thin Films, Vol. 1 [Russian translation], Mir, Moscow (1967) p. 91.

    Google Scholar 

  9. M. Born and E. Wolf,Principles of Optics, Pergamon, New York (1959).

    MATH  Google Scholar 

  10. A. E. Rosenbluth and J. M. Forsyth, “The reflecting properties of soft x-ray multilayers,” in:Proc. Conf. “Low Energy X-ray Diagnostics,” Monterey, 1981, No. 75, Amer. Inst. Phys., New York (1981), p. 280.

    Google Scholar 

  11. A. V. Vinogradov and B. Ya. Zel’dovich, “X-ray and far UV multilayer mirrors: Principles and possibilities,”Appl. Opt.,16, 89 (1977).

    ADS  Google Scholar 

  12. A. V. Vinogradov and B. Ya. Zel’dovich, “On multilayer mirrors for x-ray and far ultraviolet range,”Opt. Spektrosk.,42, 709 (1977).

    Google Scholar 

  13. J. H. Underwood and T. W. Barbee, Jr., “Layered synthetic microstructures as Bragg diffractors for x-rays and extreme ultraviolet: theory and predicted performance,”Appl. Opt.,20, 3017 (1981).

    ADS  Google Scholar 

  14. M. Abramovitz and I. Stigan (eds.),Handbook of Special Functions [Russian translation], Nauka, Moscow (1979).

    Google Scholar 

  15. P. Lee, “X-ray diffraction in multilayers,”Opt. Commun.,37, 159 (1981).

    Article  ADS  Google Scholar 

  16. P. Lee, “Uniform and graded multilayers as x-ray optical elements,”Appl. Opt.,22, 1241 (1983).

    ADS  Google Scholar 

  17. A. V. Vinogradov and I. V. Kozhevnikov, “X-ray semi-transparent multilayer mirrors,”Opt. Spektrosk.,58, 895 (1985).

    Google Scholar 

  18. A. V. Vinogradov and I. V. Kozhevnikov, “X-ray surface waves in superlattices,”Pis’ma Zh. Tekh. Fiz.,40, 405 (1984).

    Google Scholar 

  19. I. V. Kozhevnikov, “Surface electromagnetic waves in superlattices,”Poverkhnost’, No.9, 26 (1986).

  20. A. V. Vinogradov and I. V. Kozhevnikov, “Surface states of electrons in superlattices,”Dokl. Akad. Nauk,280, 587 (1985).

    Google Scholar 

  21. A. V. Vinogradov and I. V. Kozhevnikov, “Integral characteristics and methods of calculation of soft x-ray range multilayer mirrors,” Preprint of the Lebedev Physical Institute, No. 103, Moscow (1986).

  22. E. Spiller, “Evaporated multilayer dispersion elements for soft x-rays,” in: D. T. Attwood and B. L. Henke (eds.),Proc. Conf. “Low Energy X-ray Diagnostics,” Monterey, No. 75, Amer. Inst. Phys., New York (1981).

    Google Scholar 

  23. T. W. Barbee, Jr., “Sputtered layered synthetic microstructure (LSM) dispersion elements,” in: D. T. Attwood and B. L. Henke (eds.),Proc. Conf. “Low Energy X-ray Diagnostics,” Monterey, No. 75, Amer. Inst. Phys., New York (1981).

    Google Scholar 

  24. S. V. Gaponov, S. A. Gusev, B. M. Luskin, et al., “Long wave x-ray radiation mirrors,”Opt. Commun.,38, 7 (1981).

    Article  ADS  Google Scholar 

  25. L. Golub, E. Spiller, T. J. Baretti, et al., “X-ray tests of multilayer coated optics,”Appl. Opt.,23, 3529 (1984).

    ADS  Google Scholar 

  26. A. D. Askhalayan, S. V. Gaponov, S. A. Gusev, et al., “Artificial multilayered reflecting and selective elements for soft x-rays. 2. Manufacturing multilayered mirrors for soft x-rays by means of pulse laser sputtering,”Zh. Tekh. Fiz.,54, 755 (1984).

    Google Scholar 

  27. R. A. M. Keski-Kuha, “Layered synthetic microstructure technology considerations for extreme ultraviolet,”Appl. Opt.,23, 3534 (1984).

    ADS  Google Scholar 

  28. T. W. Barbee, Jr., S. Mrowka, and M. C. Hettrick, “Molybdenum-silicon multilayer mirrors for the extreme ultraviolet,”Appl. Opt.,24, 883 (1985).

    ADS  Google Scholar 

  29. S. V. Gaponov, V. V. Dubrov, I. G. Zabrodin, et al., “Normal incidence multilayer mirrors for wavelengths from 125 Å to 200 Å,”Pis’ma Zh. Tekh. Fiz.,13, 214 (1987).

    Google Scholar 

  30. A. V. Vinogradov, I. V. Kozhevnikov, V. V. Kondratenko, et al., “Investigation of titanium-beryllium multilayer x-ray mirrors fabricated by means of cathode-ray sputtering,”Pis’ma Zh. Tekh. Fiz.,13, 129 (1987).

    Google Scholar 

  31. B. L. Henke, P. Lee, T. J. Tanaka, et al., “The atomic scattering factor,f 1+if 2, for 94 elements and for the 100 to 2000 eV photon energy region,” in: D. T. Attwood and B. L. Henke (eds.),Proc. Conf. “Low Energy X-ray Diagnostics,” Monterey, No. 75, Amer. Inst. Phys., New York (1981).

    Google Scholar 

  32. S. Craig and G. L. Sharding, “Structure, optical properties, and decomposition of sputtered kinetics fay dreadnought carbon,”Thin Solid Films,97, 345 (1982).

    Article  ADS  Google Scholar 

  33. A. V. Vinogradov, V. M. Elinson, N. N. Zorev, et al., “On the impact of substance density on the reflectivity of multilayer mirrors in the x-ray range,”Opt. Spektrosk.,59, 703 (1985).

    Google Scholar 

  34. A. G. Revesz, “On the structure of noncrystalline Si and Si1-x H x films,”Phys. Status Solidi A,60, 619 (1980).

    Article  Google Scholar 

  35. J. M. Elson, J. P. Rahn, and J. M. Bennet, “Relationship of total integrated scattering from multilayer-coated optics to angle of incidence, polarization, correlation length, and roughness cross-correlation properties,”Appl. Opt.,22, 3207 (1983).

    ADS  Google Scholar 

  36. B. Vidal and P. Vincent, “Metallic multilayers for x-rays using a classical thin-film theory,”Appl. Opt.,23, 1794 (1984).

    ADS  Google Scholar 

  37. E. Spiller and A. E. Rosenbluth, “Determination of thickness errors and boundary roughness from the measured performance of a multilayer coating,” in:Application of Thin-Film Multilayered Structures to Figured X-Ray Optics, Bellingham, USA, 1985;Proc. SPIE,563, 221 (1985).

  38. S. V. Gaponov, V. M. Genkin, N. M. Salaschenko, and A. A. Fraerman, “Scattering of neutron and x-ray radiation within the 10–300 Å range from periodic structures with rough interfaces,”Pis’ma Zh. Eksp. Teor. Fiz.,41, 53 (1985).

    Google Scholar 

  39. S. V. Gaponov, V. M. Genkin, N. N. Salaschenko, and A. A. Fraerman, “Scattering of soft x-rays and cold neutrons from multilayer structures with rough interfaces,”Zh. Tekh. Fiz.,56, 70 (1986).

    Google Scholar 

  40. S. Metfessel,Thin Films: Fabrication and Measurement [Russian translation], Gosenergoizdat, Moscow (1963).

    Google Scholar 

  41. B. Warbarton, S. Reck, and T. Barbee, Jr., “Investigation of quality of multilayer coatings,” in: G. Schmall and D. Rudolf (eds.),X-ray Optics and Spectroscopy [Russian translation], Mir, Moscow (1987).

    Google Scholar 

  42. E. Spiller, “Scanning x-ray microscope with normal incidence mirrors,” in: G. Schmall and D. Rudolf (eds.),X-ray Optics and Spectroscopy [Russian translation], Mir, Moscow (1987).

    Google Scholar 

  43. B. Ashenbach, H. Brauninger, G. Hasinger, and J. Trumper, “Measurements of x-ray scattering from Walter type telescopes and various flat zerodur mirrors,” in:Radiation Scattering in Optical Systems Bellingham, USA, 1980;Proc. SPIE,257, 223 (1985).

  44. M. B. Bogachyov, V. M. Koltygin, M. E. Plotkin, et al., “Laser mirrors for far VUV region of spectrum,”Opt. Spektrosk.,51, 515 (1981).

    Google Scholar 

  45. K. H. Guenter, P. G. Wierer, and J. M. Bennet, “Surface roughness measurements of low-scatter mirrors and roughness standards,”Appl. Opt.,23, 3820 (1984).

    ADS  Google Scholar 

  46. D. T. Attwood, V. Rehn, J. Ortega, et al., “Short wavelength optics for future free electron lasers,” in:Proc. Top. Meet. Free Electron Generation of Extreme Ultraviolet Coherent Radiation, Brookhaven Nat. Lab., Upton, Long Island, New York, Sept. 19–22, 1983, Amer. Inst. Phys., New York (1983).

    Google Scholar 

  47. A. Franks, “The metrology of x-ray optical components,” in: D. T. Attwood and B. L. Henke (eds.)Proc. Conf. Low Energy X-ray Diagnostics, Monterey, 1981, No. 75, Amer. Inst. Phys., New York (1981), p. 179.

    Google Scholar 

  48. I. A. Brytov and A. Ya. Grudskiy “Instruments and methods for supersmooth-surface roughness measurements,”Izmereniya, Kontrol’, Avtomatizatsiya,48, 3 (1983).

    Google Scholar 

  49. R.-P. Haelbich, A. Segmuller, and E. Spiller, “Smooth multilayer films suitable for x-ray mirrors,”Appl. Phys. Lett.,34, 184 (1979).

    Article  ADS  Google Scholar 

  50. D. R. Kania, R. J. Bartlett and W. J. Trela, “Synchrotron based measurements of the soft x-ray performance of thin multilayer structures,” in:Application of Thin-Film Multilayered Structures to Figured X-Ray Optics, Bellingham, USA, 1985;Proc. SPIE,563, 216 (1985).

  51. E. N. Ragozin “Stigmatic spectral devices for wavelengths 30–300 Å,” Preprint of the Lebedev Physical Institute, No. 304, Moscow (1987).

  52. K. B. Youn, C. Sella, R. Barchewitz, et al., “Absolute reflectivity measurements of multilayer mirrors in the soft x-ray region,” in:Soft X-ray Optics and Technology, Bellingham, USA, 1987;Proc. SPIE,733, 316 (1987).

  53. V. V. Dubrov, I. G. Zabrodin, A. I. Kuz’mitchyov, et al., “Multilayer mirrors for the extreme UV region,”Pis’ma Zh. Tekh. Fiz.,13, 492 (1987).

    Google Scholar 

  54. J. P. Delaboundiniere, J. P. Chauvineau, and J.P.Marioge, “Space qualification of multilayer optics,” in:Application of Thin-Film Multilayered Structures to Figured X-ray Optics, Bellingham, USA, 1985;Proc. SPIE,563, 44 (1985).

  55. P. Lee, R. J. Bartlett, and D. R. Kania, “Soft x-ray optics using multilayer mirrors,”Opt. Eng.,24, 197 (1985).

    ADS  Google Scholar 

  56. C. M. Falco, F. E. Fernandez, P. Dhez, et al., “Normal incidence x-UV mirrors,” in:Soft X-ray Optics and Technology, Bellingham, USA, 1987;Proc. SPIE,733, 343 (1987).

  57. Y. Lepetre, R. Rivoira, R. Phillip, and G. Rasigni, “Fabry-Perot etalons for soft x-rays: construction and characterization,”Opt. Commum.,51, 127 (1984).

    Article  ADS  Google Scholar 

  58. Y. Lepetre, I. K. Schuller, and G. Rasigni, “Novel characterization of thin film multilayered structures: microcleavage transmission electron microscopy,” in:Application of Thin-Film Multilayered Structures to Figured X-ray Optics, Bellingham, USA, 1985;Proc. SPIE,563, 258 (1985).

  59. H. Petersen, “The high energy plane grating monochromators at BESSY,”Nucl. Instrum. Methods A,246, 260 (1986).

    Article  ADS  Google Scholar 

  60. B. L. Henke, “Low energy x-ray spectroscopy with crystals and multilayers,” in:Proc. Conf. Low Energy X-ray Diagnostics, Monterey, 1981, No.75, Amer. Inst. Phys., New York (1981), p. 258.

    Google Scholar 

  61. R. H. Day and T. W. Barbee, “Application of layered synthetic microstructures to high-temperature plasma diagnostics,”Rev. Sci. Instrum.,56, 791 (1985).

    Article  ADS  Google Scholar 

  62. G. L. Stradling, T. W. Barbee, Jr., B. L. Henke, et al., “Streaked spectrometry using multilayer x-ray interference mirrors to investigate energy transport in laser plasma applications,” in:Proc. Conf. Low Energy X-ray Diagnostics, Monterey, 1981, No.75, Amer. Inst. Phys., New York (1981), p. 292.

    Google Scholar 

  63. V. A. Boyko, F. V. Bunkin, S. V. Gaponov, et al., “Observation of VUV spectra of laser plasma by means of flat x-ray mirrors,” in:Abstracts of Soviet Union Workshop on Methods of Synthesis and Application of Multilayer Interference Systems, Moscow (1984), p. 89.

  64. V. V. Aristov, S. V. Gaponov, V. M. Genkin, et al., “Focusing properties of profiled multilayer x-ray mirrors,”Pis’ma Zh. Tekh. Fiz.,44, 207 (1986).

    Google Scholar 

  65. P. Lee, “Multilayer mirrors and beam splitters for soft x-rays,”Opt. Commun.,43, 237 (1982).

    Article  ADS  Google Scholar 

  66. K. Danzmann, M. Kuhne, P. Muller, et al., “Characterization of VUV- and soft x-ray optical components,” in:Proc. Intern. Conf. Vacuum Ultraviolet Radiat. Phys., 4–8 Aug. 1986, Sweden, Lund, Vol. 1 (1986), p. 278.

  67. A. Khandar and P. Dhez, “Multilayers x-ray polarizers,” in:Application of Thin-film Multilayered Structures to Figured X-ray Optics, Bellingham, USA, 1985;Proc. SPIE,563, 158 (1985).

  68. A. V. Vinogradov, N. N. Zorev, and I. V. Kozhevnikov, “On the extreme capacities of soft x-ray optics,” in:Classical and Quantum Effects in Electrodynamics, Proceedings of the Lebedev Physical Institute,176, Nauka, Moscow (1986), p. 196.

    Google Scholar 

  69. J. P. Chauvineau, D. Decanini, M. Mullot, et al., “Aspherization and multilayer coating of a Ritchey-Chretien telescope for λ=30.4 nm,” in:Application of Thin-Film Multilayered Structures to Figured X-ray Optics, Bellingham, USA, 1985;Proc. SPIE,563, 275 (1985).

  70. J. H. Underwood and T. W. Barbeen, Jr., “Soft x-ray imaging with a normal incidence mirrors,”Nature,294, 429 (1981).

    Article  ADS  Google Scholar 

  71. J. P. Henry, E. Spiller, and M. Weiskopf, “Imaging performance of a normal incidence soft x-ray telescope,”Appl. Phys. Lett.,40, 25 (1982).

    Article  ADS  Google Scholar 

  72. S. V. Gaponov, E. S. Gluskin, S. A. Gusev, et al., “Spherical and flat normal incidence multilayer mirrors for soft x-rays,”Pis’ma Zh. Tekh. Fiz.,9, 208 (1983).

    Google Scholar 

  73. G. F. Marshall, “Monochromatization by multilayered optics on a cylindrical reflector and on an ellipsoidal focusing ring,”Opt. Eng.,25, 922 (1986).

    Google Scholar 

  74. E. J. Stefanides, “Focusing ring: first step toward scanning x-ray microscope,” in:Design News, Cahners Publ. Co. (1986).

  75. J. P. Chauvineau, J. P. Marioge, F. Bridou, et.al., “X-UV optics in near-normal incidence realized at the ‘Institut d’Optique’,” in:Soft X-ray Optics and Technology, Bellingham, USA, 1987;Proc. SPIE,733, 301 (1987).

  76. J. DuMond and J. P. Youtz, “Selective x-ray diffraction from artificially stratified metal films deposited by evaporation,”Phys. Rev.,48, 703 (1935).

    Article  ADS  Google Scholar 

  77. J. DuMond and J. P. Youtz, “An x-ray method for determination of rates of diffusion in the solid state,”J. Appl. Phys.,11, 357 (1940).

    Article  ADS  Google Scholar 

  78. J. Dinklage and R. Frerichs, “X-ray diffraction and diffusion in metal film layered structures,”J. Appl. Phys.,34, 2633 (1963).

    Article  ADS  Google Scholar 

  79. J. Dinklage, “X-ray diffraction by multilayered thin film structures and their diffusion,”J. Appl. Phys.,34, 2633 (1967).

    Article  ADS  Google Scholar 

  80. E. Spiller, “Low-loss reflection coating using absorbing materials,”Appl. Phys. Lett.,20, 365 (1972).

    Article  ADS  Google Scholar 

  81. E. Spiller, “Multilayer interference coatings for vacuum ultraviolet radiation,” in:Cosmic Optics: Proc. IX Int. Cong. of International Optical Commission, Santa Monica, Cal., USA, October 9–13, 1972 [Russian translation], Mashinostrieniye, Moscow (1980), p. 376.

    Google Scholar 

  82. R. P. Haelbick and C. Kunz, “Multilayer interference mirrors for the XUV range around 100 eV photon energy,”Opt. Commun.,17, 287 (1976).

    Article  ADS  Google Scholar 

  83. P. Dhez, “Use of XUV multilayered optics for synchrotron radiation, plasma diagnostics, and astrophysical research,” in:Soft x-ray Optics and Technology, Bellingham, USA, 1987;Proc. SPIE,733, 308 (1987).

  84. A. V. Vinogradov, I. I. Sobelman, and E. A. Yukov, “On the problem of shortwave lasers,”J. Phys. Colloque C4,39, Suppl. 7, 61 (1978).

    Google Scholar 

  85. M. D. Rosen, P. L. Hagelstein, D. L. Mattheus, et al., “Exploding foil technique for achieving a soft x-ray laser,”Phys. Rev. Lett.,54, 106, 1985.

    Article  ADS  Google Scholar 

  86. D. L. Mattheus, P. L. Hagelstein, M. D. Rosen, et al., “Demonstration of a soft x-ray amplifier,”Phys. Rev. Lett.,54, 110 (1985).

    Article  ADS  Google Scholar 

  87. S. Suckewer, C. H. Skinner, H. Milchberg, et al., “Amplification of stimulated soft x-ray emission in a confined plasma column,”Phys. Rev. Lett.,55, 1753 (1985).

    Article  ADS  Google Scholar 

  88. N. M. Ceglio, D. J. Stearns, and A. M. Hawryluk, “Multilayer structures for x-ray laser cavities,” in:Application of Thin-Film Multilayered Structures to Figured X-ray Optics, Bellingham, USA, 1985;Proc. SPIE,563, 360 (1985).

  89. N. M. Ceglio, D. J. Stearns, A. M. Hawryluk, et al., “Soft x-ray laser cavities,”J. Phys. Colloque C6,47, Suppl. 10, 277 (1986).

    Google Scholar 

  90. J. H. Underwood, T. W. Barbee, and C. Frierer, “X-ray microscope with multilayer mirrors,”Appl. Opt.,25, 1730 (1986).

    ADS  Google Scholar 

  91. R. S. Nelson, Z. L. Barbaric, A. R. Ricci, et al., “Multilayer mirrors as x-ray filters for slit scan radiography,” in:Application of Thin-Film Multilayered Structures to Figured X-ray Optics, Bellingham, USA, 1985;Proc. SPIE,563, 131 (1985).

  92. S. M. Zee (ed.),SBIS Technology [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  93. Physical Foundations of X-ray Analysis, Nauka, Moscow (1973).

  94. H. Erdhardt (ed.),X-ray Fluorescence Analysis: Application to Industrial Laboratories [Russian translation], Metallurgiya, Moscow (1985).

    Google Scholar 

  95. S. V. Gaponov, A. Ya. Grudskiy, S. A. Gusev, et al., “Multilayer dispersive elements for soft x-rays,”Zh. Tekh. Fiz.,55, 575 (1985).

    Google Scholar 

  96. H. Heijligers and G. Bastin, “The performance of an ‘LSM’ crystal compared to that of a conventional stearate crystal for the quantitative EPMA of nitrogen,”Beitr. Elektronen-Mikroskop, Directabb, Oberfl.,19, 1 (1986).

    Google Scholar 

  97. K. Kawabe, M. Saito, A. Kato, et al., “Coated multilayer dispersion element for x-ray microanalysis,” in:Proc. XI Congr. Electron Microsc., Kyoto (1986), p. 569.

  98. J. N. Kikkert, “X-ray fluorescence sees light elements,”Res. Develop., Vol. 82 (1986).

  99. J. A. Nicolosi, J. P. Groven, D. Merlo, and R. Jenkins, “Layered synthetic microstructures for long wavelength x-ray spectrometry,”Opt. Eng.,25, 964 (1986).

    Google Scholar 

  100. M. Pirocci, R. Barchewitz, S. Bodern, et al., “Comparative efficiency of natural crystals and multilayer as dispersing devices in the copperL 2,3 range,”Appl. Opt.,25, 3640 (1986).

    Article  ADS  Google Scholar 

  101. J. J. Bonnet, M. G. Surand, M. Chassevent, et al., “Reflectivity measurements on synthetic multilayers in the 1–5 nm wavelength range,” in:Proc. XIV Intern. Conf. X-ray and Inner-shell Processes, Paris, Sept., 14–18, 1987, Orsay (1987).

  102. M. Finkenthal, D. Stutman, J. L. Schwob, and J. Underwood, “Space resolved measurements of the emission of intermediate and high ionization states of titanium obtained from vacuum spark plasmas using XUV multilayer mirrors and RbAP crystal,” in:Proc. IAU, Colloquium No. 102 on UV and X-ray Spectroscopy of Astrophysical and Laboratory Plasma, Sept. 9–11, 1987, Bealieu-sur-Mer (France), Orsay (1987), p. 56.

  103. V. Gelius, J. Asplung, E. Basilier, et al., “A high resolution multipurpose ESCA instrument with x-ray monochromator,”Nucl. Instrum. Methods Phys. Res. B,1, 85 (1984).

    Article  ADS  Google Scholar 

  104. A. V. Vinogradov and N. N. Zorev, “Projectional x-ray lithography,” Preprint of the Lebedev Physical Institute, No. 104, Moscow (1987).

  105. E. Ziegler, Y. Lepetre, I. K. Shuller, and E. Spiller, “Stability of multilayers for synchrotron optics,”Appl. Phys. Lett.,48, 1354 (1986).

    Article  ADS  Google Scholar 

  106. A. A. Fraerman, S. V. Gaponov, V. M. Genkin, and N. N. Salaschenko, “The effect of the interfacial roughness on the reflection properties of multilayer x-ray mirrors,”Nucl. Instrum. Methods Phys. Res. A,261, 91 (1987).

    Article  ADS  Google Scholar 

  107. Yu. Ya. Platonov, N. I. Polushkin, N. N. Salaschenko, and A. A. Fraerman, “X-ray investigation of the properties of multilayer structures,”Zh. Tekh. Fiz.,57, 2192 (1987).

    Google Scholar 

  108. A. D. Akhsakhalyan, S. V. Gaponov, S. A. Gusev, et al., “Multilayer x-ray mirrors for the wavelength range 25–40 Å,”Nucl. Instrum. Methods Phys Res. A,261, 75 (1987).

    Article  ADS  Google Scholar 

  109. A. V. Vinogradov and I. V. Kozhevnikov, “Reflection and scattering of x-rays from rough surfaces,” in:X-ray Optics, Proceedings of the Lebedev Physical Institute,196, Nauka, Moscow (1989), p. 18 [English translation]J. Russ. Laser Res.,16, 229 (1995).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Trudy Fizicheskogo Instituta im. P. N. Lebedeva (Proceedings of the Lebedev Physical Institute, Russian Academy of Sciences, Moscow), Vol. 196, pp. 68–102, 1989.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozhevnikov, I.V., Vinogradov, A.V. Multilayer x-ray mirrors. J Russ Laser Res 16, 343–385 (1995). https://doi.org/10.1007/BF02581074

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02581074

Keywords

Navigation