Skip to main content
Log in

Recolonization of estuarine organisms: effects of microcosm size and pesticides

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Two six-week laboratory experiments were conducted to evaluate effects of pesticides and microcosm size on benthic estuarine macroinvertebrate recolonization. Sediments fortified with the pesticides (fenvalerate: controls, 5 (low) and 50 µg g−1 wet sediment (high); endosulfan: controls, 1 (low) and 10 µg g−1 wet sediment (high)) were fine-grained, organically rich (approximately 3.5% organic carbon and 22% dry weight) material. Relative dominance of the four most abundant taxa in both experiments was consistent among treatments with few exceptions. The amphipod,Corophium acherusicum, dominated abundance in both experiments.

In the fenvalerate experiment, large trays (400 cm2) contained significantly (p<0.05) more total number of taxa (TNT) than small microcosms (144 cm2) but tray size was not significantly related to total number of organisms (TNO). When size was adjusted to a common unit area, small trays contained significantly more TNO than large containers. Adjusted abundance of small trays was 2.5 times that of large containers; a ratio close to that of microcosm sizes (i.e., 2.8). This result suggests that larval supply may have been inadequate to ‘aturate’ the available sediment in large containers. Fenvalerate significantly reduced abundance in the high treatment compared to both controls and low treatment but low treatment was not significantly different from controls. The amphipod,Corophium acherusicum, accounted for most of the decrease in abundance in response to fenvalerate. The holothruroid,Leptosynpta sp. and the polychaete,Mediomastus ambiseta, increased in abundance significantly with increased concentration of fenvalerate.

Combined effects of actual microcosm size and concentration of endosulfan were not significant for TNO or TNT. As in the fenvalerate experiment, adjusted abundance of small microcosms was 2.6 times that of large trays which approximated the ratio of unit area between microcosm sizes. Abundance of a few taxa responded significantly to adjusted and unadjusted unit area. Abundance of the tunicate,Molgula manhattensis, increased significantly with increased concentration of endosulfan. Abundance was affected by sample location (e.g., interiorvs exterior cores) within microcosms. Abundance adjusted to unit area resulted in significantly greater TNO in externalvs internal cores. This has importance for sequential sub-sampling of microcosms to determine temporal dynamics.

Statistically significant effects were measured in benthic community structure associated with microcosm size; however, the magnitude was relatively small. There appears to be no major biological reason to select one microcosm size over the other for screening for contaminant effects. Where feasible, the small trays provide savings in sample preparation and analysis, allow more replicates where laboratory space is limiting and generate less chemical waste. These benefits may be off-set by less ‘artifacts’ associated with edge effects of larger microcosms and the need for a larger mass of sediment to accommodate additional analytical requirements (e.g., thin vertical surficial samples to refine contaminant exposure at the sediment/water interface).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, D., M. Amdurer & P. H. Santschi, 1980. Metal tracers in two marine microcosms: Sensitivity to scale and configuration. In J. P. Giesy, Jr. (ed.), Microcosms in Ecological Research. Symposium Series 52 (Conf.-781101). U.S. Dept. of Energy, Washington, D.C.: 348–368.

    Google Scholar 

  • Baughman, D. S., D. W. Moore & G. I. Scott, 1989. A comparison and field evaluation of field and laboratory toxicity tests with fenvalerate on an estuarine crustacean. Envir. Toxicol. Chem. 8: 417–429.

    CAS  Google Scholar 

  • Butman, C. A., 1986. Larval settlement of soft-sediment invertebrates: Some predictions based on an analysis of near-bottom velocity profiles. In J. C. J. Nihoul (ed.), Marine Interfaces — Ecohydrodynamics. Elsevier Oceanographic Series Vol. 42: 487–513.

    Article  Google Scholar 

  • Butman, C. A., 1987. Larval settlement of soft-sediment invertebrates: The spatial scales of pattern explained by active habitat selection and the emerging role of hydrodynamical processes. Oceanogr. Mar. Biol. Ann. Review 25: 113–165.

    Google Scholar 

  • Chandler, G. T., 1990. Effects of sediment-bound residues of the pyrethroid insecticide fenvalerate on survival and reproduction of meiobenthic copepods. Mar. envir. Res. 29: 65–76.

    Article  CAS  Google Scholar 

  • Chandler, G. T. & G. I. Scott, 1991. Effects of sediment-bound endosulfan on survival, reproduction and larval settlement of meiobenthic polychaetes and copepods. Envir. Toxicol. Chem. 10: 375–382.

    CAS  Google Scholar 

  • Chapman, P. M., R. N. Dexter & E. R. Long, 1987. Synoptic measures of sediment contamination, toxicity and infaunal community composition (the Sediment Quality Triad) in San Francisco Bay. Mar. Ecol. Prog. Ser. 37: 75–96.

    CAS  Google Scholar 

  • Chapman, P. M., 1989. Current approaches to developing sediment quality criteria. Envir. Toxocol. Chem. 8: 589–599.

    CAS  Google Scholar 

  • Clark, J. R., J. M. Patrick, Jr., J. C. Moore & E. M. Lores, 1987. Waterborne and sediment-source toxicities of six organic chemicals to grass shrimp (Palaemontes pugio) and Amphioxus (Branchiostoma caribaeum). Arch. envir. Contam. Toxicol. 16: 401–407.

    Article  CAS  Google Scholar 

  • Clark, J. R., L. R. Goodman, P. W. Borthwick, J. M. Patrick, Jr., G. M. Cripe, P. M. Moody, J. C. Moore & E. M. Lores, 1989. Toxicity of pyrethroids to marine invertebrates and fish: A literature review and test results with sediment-sorbed chemicals. Envir. Toxicol. Chem. 8: 393–401.

    CAS  Google Scholar 

  • Cotham, W. E. & T. F. Bidleman, 1989. Degradation of malathion, endosulfan, and fenvalerate in seawater/sediment microcosms. J. Agric. Food Chem. 37: 824–828.

    Article  CAS  Google Scholar 

  • Crossland, N. O. & T. W. La Point, 1992. The design of mesocosm experiments. Symposium on Aquatic Mesocosms in Ecotoxicology. Envir. Toxicol. Chem. 11: 1–4.

    Google Scholar 

  • Diaz, R. J., M. Luckenbach, S. Thornton, R. J. Livingston, C. C. Koenig, G. L. Ray & L. E. Wolfe, 1987. Field validation of multi-species laboratory test system of estuarine benthic communities. Final Report, Environmental Research Laboratory, Office of Research and Development, U.S. EPA, Gulf Breeze, Fl. USA.

  • Di Toro, D. M., C. S. Zarba, D. J. Hansen, W. E. Berry, R. S. Swartz, C. E. Cowan, S. P. Pavlou, H. E. Allen, N. A. Thomas & P. R. Paquin, 1991. Technical basis for establishing sediment quality criteria for nonionic organic chemicals by using equilibrium partitioning. Envir. Toxicol. Chem. 10: 1541–1583.

    Google Scholar 

  • Eckman, J. E., 1983. Hydrodynamic processes affecting benthic recruitment. Limnol. Oceanogr. 28: 241–257.

    Article  Google Scholar 

  • Fairchild, J. F., T. W. La Point, J. L. Zajicek, M. K. Nelson, F. J. Dwyer & P. A. Lovely, 1992. Population-, community-, and ecosystem-level responses of aquatic mesocosms to pulsed doses of a pyrethroid insecticide. Envir. Toxicol. Chem. 11: 115–129.

    CAS  Google Scholar 

  • Flemer, D. A., 1989. Perdido Bay as a long-term Gulf Region Estuarine Ecosystem Verification Template. EPA/600/X-89/162, U.S. Environmental Protection Agency, Environmental Research Laboratory, Gulf Breeze, FL, 72 pp.

  • Flemer, D. A., J. R. Clark, R. S. Stanley, C. M. Bundrick & G. R. Plaia, 1993. The importance of physical scaling factors to benthic marine invertebrate recolonization of laboratory microcosms. Int. J. envir. Stud. 44: 161–179.

    Google Scholar 

  • Gascon, C. & J. Travis, 1992. Does spatial scale of experiment matter? A test with tadpoles and dragonflies. Ecology 73: 2237–2243.

    Article  Google Scholar 

  • Gaston, G. R., P. A. Rutledge & M. L. Walther, 1985. The effects of hypoxia and brine on recolonization by macrobenthos off Cameron, Louisiana (USA). Contrib. mar. Sci. 28: 79–95.

    Google Scholar 

  • Gearing, J. N., 1989. The role of aquatic microcosms in ecotoxicologic research as illustrated by large marine systems. (Chapter 15). In S. A. Levinet al., (eds), Ecotoxicology: Problems and Approaches. Springer-Verlag, New York, 547 pp.

    Google Scholar 

  • Hannan, C. A., 1981. Polychaete larval settlement: correspondence of patterns in suspended jar collections and in the adjacent natural habitat in Monterey Bay. California. Limnol. Oceanogr. 26: 159–171.

    Article  Google Scholar 

  • Heimbach, F., W. Pflueger & H. T. Ratte, 1992. Use of small artificial ponds for assessment of hazards to aquatic ecosystems. Envir. Toxicol. Chem. 11: 27–34.

    Google Scholar 

  • Heinis, L. J. & M. L. Knuth, 1992. The mixing, distribution and persistence of esfenvalerate within littoral enclosures. Envir. Toxicol. Chem. 11: 11–25.

    CAS  Google Scholar 

  • Hurlburt, S. H., 1975. Secondary effects of pesticides on aquatic ecosystems. In F. A. Gunther & J. D. Gunther. Residue Reviews, Residues of Pesticides and other Contaminants in the Total Environment. Springer-Verlag, New York. Vol. 57, 152 pp.

    Google Scholar 

  • Kaushik, N. K., K. R. Solomon, G. L. Stephenson & K. E. Day, 1986. Use of limnocorrals in evaluating the effects of pesticides on zooplankton communities. In J. Cairns, Jr. (ed.), Community Toxicity Testing, ASTM STP 920. Amer. Soc. for Testing and Materials, Philadelphia, 350 pp.

    Google Scholar 

  • Kelly, J. R., D. T. Rudnick, R. D. Morton, L. A. Buttel, S. N. Levine & K. A. Carr, 1990. Tributyltin and invertebrates of a seagrass ecosystem: exposure and response of different species. Mar. envir. Res. 29: 245–276.

    Article  CAS  Google Scholar 

  • Kimball, K. D. & S. A. Levin, 1985. Limitations of bioassays: the need for ecosystem-level testing. Bioscience 35: 165–171.

    Article  Google Scholar 

  • Lalli, C. M. (ed.), 1990. Enclosed experimental marine ecosystems: A review and recommendations. Springer-Verlag, New York, 210 pp.

    Google Scholar 

  • Lambert, C. E. & C. A. Oviatt, 1986. Manual of biological and geochemical techniques in coastal areas. MERL Series Report No. 1, 2nd edn. The University of Rhode Island, Kingston, RI.

    Google Scholar 

  • Legendre, L., S. Demers & D. Lefaivre, 1986. Biological production at marine ergoclines. In J. C. J. Nihoul (ed.), Marine Interfaces/Ecohydrodynamics. Elsevier Oceanography Series 42. Elsevier, New York: 1–29.

    Google Scholar 

  • Levin, S. A., 1992. The problem of pattern and scale in ecology. Ecology 73: 1943–1967.

    Article  Google Scholar 

  • Levine, S. N., D. T. Rudnick, J. R. Kelly, R. D. Morton & L. A. Buttel, 1990. Pollutant dynamics as influenced by seagrass beds: Experiments with tributyltin inThalassia microcosms. Mar. envir. Res. 30: 297–322.

    Article  CAS  Google Scholar 

  • Lewis, M. R. & T. Platt, 1982. Scales of variability in estuarine ecosystems. In V. S. Kennedy (ed.), Estuarine comparisons. Academic Press, New York: 3–20.

    Google Scholar 

  • Livingston, R. J., R. J. Diaz & D. C. White, 1985. Field validation of laboratory-derived multispecies aquatic test system. U.S. Environmental Protection Agency, EPA/600/Sf-85/039, Gulf Breeze, FL, 7 pp.

  • Lozano, S. J., S. L. O'Halloran & K. W. Sargent, 1992. Effects of esfenvalerate on aquatic organisms in littoral enclosures. Envir. Toxicol. Chem. 11: 35–47.

    CAS  Google Scholar 

  • Lundgen, A., 1985. Model ecosystems as a tool in freshwater and marine research. Arch. Hydrobiol/suppl. 70: 157–196.

    Google Scholar 

  • McKenney, C. L., Jr. & D. B. Hamaker, 1984. Effects of fenvalerate on development ofPalaemontes pugio (Holthus) and on larval metabolism during osmotic stress. Aquat. Toxicol. 5: 343–355.

    Article  CAS  Google Scholar 

  • McLeese, D. W., C. D. Metcalfe & V. Zitko, 1980. Lethality of perimethrin, cypermethrin and fenvalerate to salmon, lobster and shrimp. Bull. envir. Contam. Toxicol. 25: 950–955.

    Article  CAS  Google Scholar 

  • National Oceanic & Atmospheric Administration, 1991. Second summary of data on chemical concentrations in sediments from the National States and Trends Program. NOAA Tech. Memorandum NOS OMA 59. Rockville, MD. Appendices A–D.

  • National Research Council, 1989. Contaminated marine sediments — Assessment and Remediation. National Academy Press. Washington, D.C., 493 pp.

    Google Scholar 

  • Nowell, A. R. M. & P. A. Jumars, 1987. Flumes: Theoretical and experimental consideration for simulation of benthic environments. Oceanogr. Mar. Biol. Ann. Review 25: 91–112.

    Google Scholar 

  • Odum, E. P., 1984. The mesocosm. BioScience 34: 559–562.

    Article  Google Scholar 

  • Perez, K. T., G. M. Morrison, N. F. Lackie, C. A. Oviatt, S. W. Nixon, B. A. Buckley & J. F. Heltshe, 1977. The importance of physical and biotic scaling to the experimental simulation of a coastal marine ecosystem. Helgolaender wiss. Meeresunters. 30: 144–162.

    Article  CAS  Google Scholar 

  • Santschi, P. H., D. Adler, M. Amduer, Y-H. Li & J. Bell, 1980. Thorium isotopes as analogs for ‘Particle-reactive’ pollutants in coastal marine environments. Earth Plant. Sci. Lett. 47: 327–335.

    Article  CAS  Google Scholar 

  • SAS, 1989a. User's Guide: Basics. SAS Institute, Inc., Cary, NC., 1290 pp.

    Google Scholar 

  • SAS, 1989b. User's Guide: Statistics. SAS Institute, Inc., Cary, NC., 957 pp.

    Google Scholar 

  • Schimmel, S. C., J. M. Patrick, Jr. & A. J. Wilson, Jr., 1977. Acute toxicity to and bioconcentration of endosulfan by estuarine animals. Aquatic Toxicology and Hazard Evaluation, ASTM STP 634. In F. L. Mayer & J. L. Hamelink (eds), Am. Soc. for Testing and Materials, Philadelphia, PA: 241–252.

    Google Scholar 

  • Schimmel, S. C., R. L. Garnas, J. M. Patrick, Jr. & J. C. Moore, 1983. Acute toxicity, bioconcentration, and persistence of AC 222, 705, benthicarb, chloropyrifos, fenvalerate, methyl parathion, and permetrin in the estuarine environment. J. Agric. Food Chem. 31: 104–113.

    Article  PubMed  CAS  Google Scholar 

  • Scott, G. I., M. H. Fulton, D. W. Moore, G. T. Chandler, P. B. Key, T. W. Hampton, J. M. Marcus, K. L. Jackson, S. S. Bauchman, A. H. Trin, L. Williams, C. J. Louden & E. R. Patterson, 1990. Agricultural insecticide runoff effects on estuarine organisms: Correlating laboratory and field toxicity testing with ecotoxicological biomonitoring. CR813138. Final Project Report. U.S. Environmental Protection Agency, Gulf Breeze, FL.

    Google Scholar 

  • Shea, D., 1988. Developing national sediment quality criteria. Envir. Sci. Tech, 22: 1256–1261.

    Article  CAS  Google Scholar 

  • Solomon, K. R., G. L. Stephenson & N. K. Kaushik, 1989. Effects of methoxychlor on zooplankton in freshwater enclosures: Influence of enclosure size and number of applications. Envir. Toxicol. Chem. 8: 659–669.

    CAS  Google Scholar 

  • Swartz, R. C., D. W. Schults, T. H. DeWitt, G. R. Ditsworth & J. O. Lamberson, 1990. Toxicity of fluoranthene in sediment to marine amphipods: A test of the equilibrium partitioning approach to sediment quality criteria. Envir. Toxicol. Chem. 9: 1071–1080.

    CAS  Google Scholar 

  • Tagatz, M. E., 1986. Some methods for measuring effects of toxicants on laboratory-and field-colonized estuarine benthic communities. In J. Cairns (ed.), Community Toxicity Testing. ASTM STP 920. Am. Soc. for Testing and Materials, Philadelphia, PA: 18–29.

    Google Scholar 

  • Tagatz, M. E., N. R. Gregory & G. R. Plaia, 1982. Effects of chlorpyrifos on field and laboratory-developed estuarine benthic communities. J. Toxicol. Envir. Health. 10: 411–421.

    Article  CAS  Google Scholar 

  • Tagatz, M. E. & J. M. Ivey, 1981. Effects of fenvalerate on field-and laboratory- developed estuarine benthic communities. Bull. Envir. Contam. Toxicol. 27: 256–267.

    Article  CAS  Google Scholar 

  • Tagatz, M. E., R. S. Stanley, G. R. Plaia & C. H. Deans, 1987. Responses of estuarine macrofauna colonizing sediments contaminated with fenvalerate. Envir. Toxicol. Chem. 6: 21–25.

    CAS  Google Scholar 

  • Touart, L. W., 1988. Aquatic mesocosm tests to support pesticide registrations. EPA 540/09-88-035, Washington, D.C.

  • Webber, E. C., W. D. Deutsch, D. R. Bayne & W. C. Seesock, 1992. Ecosystem-level testing of a synthetic pyrethroid insecticide in aquatic mesocosms. Envir. Toxicol. Chem. 11: 87–105.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flemer, D.A., Stanley, R.S., Ruth, B.F. et al. Recolonization of estuarine organisms: effects of microcosm size and pesticides. Hydrobiologia 304, 85–101 (1995). https://doi.org/10.1007/BF02579415

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02579415

Key words

Navigation