Skip to main content
Log in

Age-related changes in mineral of rat and bovine cortical bone

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The mineral of cortical bones has been studied in newborn, growing, and adult rats and in the calf and cow, using X-ray diffraction and infrared spectroscopy during the thermal decomposition of bones and by microassay of carbonate. The mineral of all the bone samples, regardless of species or age, was found to be a calcium-deficient apatite containing both CO3 2− and HPO4 2− ions in the crystal lattice. The crystal size, Ca/P molar ratio, and CO3 2− ion content of cortical bone all increased with increasing age in both the rat and the bovine. The Ca/P ratio varied from 1.51 in newborn rats to 1.69 in adults but remained that of Ca-deficient apatite even though its value was close to that of stoichiometric hydroxyapatite (1.67). Both the carbonate ion and the hydrogenophosphate ion contents varied from one animal species to another and with age within a given species. Maturation was correlated with an increase in carbonate ion content, which replaced the HPO4 2− ions. In contrast, the calcium ion number per unit formula did not vary during maturation. Cortical bone mineral, in both species, regardless of age, can therefore be represented by the following formula: Ca8.3(PO4)4.3(CO3)x(HPO4)y(OH)0.3; y decreased and x increased with increasing age, (x+y) being constant, equal to 1.7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pellegrino ED, Biltz RM (1972) Mineralization in the chick embryo. I. Monohydrogen phosphate and carbonate relationships during maturation of bone cristal complex. Calcif Tissue Res 10:128–135

    Article  PubMed  CAS  Google Scholar 

  2. Heinke DK, Skinner HCW, Thomson KS (1979) X-ray diffraction of the calcified tissue in Polypterus. Calcif Tissue Int 28:37–42

    Article  Google Scholar 

  3. Quelch KJ, Melick RA, Bingham PJ, Mercuri SM (1983) Chemical composition of human bone. Arch Oral Biol 28:665–674

    Article  PubMed  CAS  Google Scholar 

  4. Grynpas MD, Bonar LC, Glimcher MJ (1984) Failure to detect an amorphous calcium-phosphate solid phase in bone mineral: a radial distribution function study. Calcif Tissue Int 36:291–301

    Article  PubMed  CAS  Google Scholar 

  5. Termine JD, Posner AS (1966) Infrared analysis of rat bone. Age dependency on amorphous and crystalline mineral fractions. Science 153:1523–1525

    Article  PubMed  CAS  Google Scholar 

  6. Termine JD, Posner AS (1967) Amorphous crystalline interrelationships in bone mineral. Calcif Tissue Res 1:8–23

    Article  PubMed  CAS  Google Scholar 

  7. Brown WE, Smith JP, Lehr JR, Frazier AW (1962) Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature 196:1048–1055

    Article  CAS  Google Scholar 

  8. Chickerur NS, Tung MS, Brown WE (1980) A mechanism for incorporation of carbonate into apatite. Calcif Tissue 32:55–66

    Article  CAS  Google Scholar 

  9. Roufosse AH, Landis WY, Sabine WK, Glimcher MJ (1979) Identification of brushite in newly deposited bone mineral from embryonic chicks. J Ultrastruct Res 68:235–255

    Article  PubMed  CAS  Google Scholar 

  10. Bonar LC, Grynpas MD, Glimcher MJ (1984) Failure to detect crystalline brushite in embryonic chick and bovine bone by X-ray diffraction. J Ultrastruct Res 86:93–99

    Article  PubMed  CAS  Google Scholar 

  11. Legros R, Bonel G, Balmain N, Juster M (1978) Identification précise du constituant minéral des os par étude de son comportement thermique. J Chim Phys 75:761–766

    CAS  Google Scholar 

  12. Legros R, Balmain N, Bonel G (1986) On the structure and composition of the mineral phase of periosteal bone. J. Chem Research (S), 8–9, J Chem Research (M) 0132-170

  13. Termine JD, Eanes ED, Greenfield DJ, Nylen MU, Harper RA (1973) Hydrazine deproteinated bone mineral. Calcif Tissue Res 12:73–90

    Article  PubMed  CAS  Google Scholar 

  14. Burnell JM, Teubner EJ, Miller AG (1980) Normal maturation changes in bone matrix, mineral and crystal size in rat. Calcif Tissue Int 31:13–19

    Article  PubMed  CAS  Google Scholar 

  15. Bonar LC, Roufosse AH, Sabine WK, Grynpas MD, Glimcher MJ (1983) X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone. Calcif Tissue Int 35:202–209

    Article  PubMed  CAS  Google Scholar 

  16. Balmain N, Legros R, Bonel G (1982) X-ray diffraction of calcined bone tissue: a reliable method for the determination of bone Ca/P molar ratio. Calcif Tissue Int 34:S93-S98

    PubMed  Google Scholar 

  17. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd ed. John Wiley and Sons, New York, pp 687–692

    Google Scholar 

  18. Godinot C, Bonel G, Torres L, Mathieu J (1984) Chromatography assay of carbonate in the submilligram range: application to carbonate assay of calcified tissue. Microchemical J 29:92–105

    Article  CAS  Google Scholar 

  19. Kühl G, Nebergall WH (1963) Hydrogenphosphat-und carbonatapatite. Z anorg allg Chem 324:313–320

    Article  Google Scholar 

  20. Meyer JL, Fowler BO (1982) Lattic defects in nonstoichiometric calcium hydroxyapatites. A chemical approach. Inorg Chem 21:3029–3035

    Article  CAS  Google Scholar 

  21. Bonel G, Lalarthe JC, Vignoles C (1975) Contribution à l'étude structurale des apatites carbonatées de type B. Colloques Internationaux du CNRS, 230:117–125

    CAS  Google Scholar 

  22. Labarthe JC, Bonel G, Montel G. (1973) Sur la structure et la propriété des apatites carbonatées de type B phosphocalciques. Ann Chim 8:289–301

    CAS  Google Scholar 

  23. Posner AS, Betts F (1975) Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Accounts Chem Res 8:273–281

    Article  CAS  Google Scholar 

  24. Steve-Bocciarelli D, Arancia G, Trovalusci P (1973) Apatite microcrystals in bone and dentine. J Microscopie 16:21–34

    CAS  Google Scholar 

  25. Hayek E, Link H (1975) Hydrogenophosphate and carbonate in synthetic calcium phosphates and in the bone mineral. Colloques Internationaux du CNRS 230:101–104

    CAS  Google Scholar 

  26. Suzuki M (1973) Physiochemical nature of hard tissue. VIII. Determination of carbonate ions in the inorganic component of hard tissue by infrared reflextance spectroscopy. Hirosaki Igaku 24:450–456

    CAS  Google Scholar 

  27. Suzuki M (1974) Physiochemical nature of hard tissue X. Carbonate ions in inorganic crystals of biological hard tissues examined by laser. Raman and infrared spectroscopy. Hirosaki Igaku 26:20–25

    CAS  Google Scholar 

  28. Pellegrino ED, Biltz RM, Letteri JM (1977) Inter-relationships of carbonate, phosphate, monohydrogen phosphate, calcium, magnesium and sodium in uraenic bone. Clin Sci Mol Med 53:307–316

    PubMed  CAS  Google Scholar 

  29. Aoba T, Moriwaki Y, Doi Y, Okasaki M, Takahashi J, Toshio Y (1980) Diffuse X-ray scattering from apatite crystals and its relation to amorphous bone mineral. J Osaka Univ Dent Sch 20:81–90

    PubMed  CAS  Google Scholar 

  30. Legeros RZ (1967) Crystallographic studies of the carbonate substitution in the apatite structure, thesis. New York University, New York.

    Google Scholar 

  31. Legeros RZ, Trautz OR, Legeros JP, Klein E (1968) Carbonate substitution in the apatite structure. Bull Soc Chim Fr No special 1712:5–7

    Google Scholar 

  32. Okazaki M, Doi Y, Takahashi J, Moriwaki Y, Aoba T (1980) Physicochemical properties of synthetic CO3-containing apatites. Crystallinity and solubility. Shika Kiso Igakkai Zasshi 22:97–101

    CAS  Google Scholar 

  33. Nelson DGA (1981) The influence of carbonate on the atomic structure and reactivity of hydroxyapatite. J Dent Res 60(C):1621–1629

    PubMed  CAS  Google Scholar 

  34. Grynpas MD, Etz ES, Landis WJ (1982) Studies of calcified tissues by Raman microprobe analysis. Microbeam Analysis, San Francisco Press, San Francisco

    Google Scholar 

  35. Roufosse AH, Aue WP, Roberts JE, Glimcher MJ, Griffin RG (1984) Investigation of the mineral phases of bone by solid state phosphorus-31 magic angle sample spinning nuclear magnetic resonance. Biochemistry 23:6115–6120

    Article  PubMed  CAS  Google Scholar 

  36. Biltz RM, Pellegrino ED (1977) The nature of bone carbonate. Clin Orthop 129:279–292

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legros, R., Balmain, N. & Bonel, G. Age-related changes in mineral of rat and bovine cortical bone. Calcif Tissue Int 41, 137–144 (1987). https://doi.org/10.1007/BF02563793

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02563793

Key words

Navigation