Skip to main content
Log in

Osteonectin inhibitingde novo formation of apatite in the presence of collagen

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The effect of bone matrix protein of osteonectin onde novo formation of apatite was studied in a wide range of calcium phosphate solutions in the presence of collagen. In every solution, from which amorphous calcium phosphate, octacalcium phosphate, or apatite precipitated as a possible initial phase, osteonectin at concentrations less than 1 μM retarded the precipitation, subsequent transformation to apatite, and ripening crystal growth of apatite. Collagen present as either reconstituted or denatured form had no effect on the osteonectin-associated reactions as well as osteonectin-free reactions, and no structural correlation was observed between collagen fibrils and any of the calcium phosphates that appeared in our system. Direct measurement of free calcium levels in the solutions suggested that the reduction in calcium activity due to complexing with osteonectin hardly explained the inhibitory activity of osteonectin in retarding the formation of apatite. Instead, our transmission electron microscopic (TEM) observation strongly suggested that the primary mechanism for osteonectin to inhibit the formation of apatite is to block growth sites of calcium phosphates nucleated. The apatite thus formed in the presence of osteonectin showed less resolved X-ray diffraction patterns, partly because of smaller crystallites as suggested by TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Robinson RA (1952) An electron-microscopic study of crystalline inorganic component of bone and its relationship to the organic matrix, J Bone Joint Surg 34a:389–434

    PubMed  Google Scholar 

  2. Engstrom A, Engfeldt B, Zetterstrom R (1952) Relation between collagen and mineral salts in bone tissue. Experimentia 15:259

    Article  Google Scholar 

  3. Francis MD, Webb NC (1971) Hydroxyapatite formation from a hydrated calcium monohydrogen phosphate precursor. Calcif Tissue Res 6:355–342

    Google Scholar 

  4. Neuman WF, Bareham BJ (1975) Evidence for the presence of secondary calcium phosphate in bone and its stabilization by acid production. Calcif Tissue Res 18:161–172

    Article  PubMed  CAS  Google Scholar 

  5. Eanes ED, Termine JD, Posner AS (1967) Amorphous calcium phosphate in skeletal tissue. Clin Orthop 53:223–235

    PubMed  CAS  Google Scholar 

  6. Eanes ED, Termine JD, Nylen MU (1973) An electron microscopic study of the formation of amorphous calcium phosphate and its transformation to crystalline apatite. Calcif Tissue Res 12:143–158

    Article  PubMed  CAS  Google Scholar 

  7. Brown WE, Smith JP, Lehr JR, Frazier AW (1962) Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature 196:1048–1055

    Article  CAS  Google Scholar 

  8. Brown WE (1966) Crystal growth of bone mineral. Clin Orthop 44:205–220

    PubMed  CAS  Google Scholar 

  9. Howell DS, Pita JC, Marquez JF, Madruga JE (1968) Partition of calcium, phosphate, and protein in the fluid phase aspirated by calcifying sites in epiphyseal cartilage. J Clin Invest 47:1121–1132

    PubMed  CAS  Google Scholar 

  10. Glimcher MJ, Hodge AJ, Schmitt FO (1957) Macromolecular aggregation states in relation to mineralization: the collagen-hydroxyapatite system as studied in vitro. Proc Natl Acad Sci USA 43:860–867

    Article  PubMed  CAS  Google Scholar 

  11. Solomons CC, Neuman WF (1960) On the mechanisms of calcification: the mineralization of dentin. J Biol Chem 235:2502–2506

    PubMed  CAS  Google Scholar 

  12. Katz ED (1969) The kinetics of mineralization in vitro. I. The nucleator properties of 640-Å collagen at 25°C. Biochim Biophys Acta 194:121–129

    PubMed  CAS  Google Scholar 

  13. Neuman WF (1980) Bone material and calcification mechanisms. In: Urist MR (ed), Fundamental and clinical bone physiology JB Lippicott, Philadelphia

    Google Scholar 

  14. Glimcher MJ (1981) On the form and function of bone from molecules to organs: Wolff's law revisited, 1981. In: Veis A (ed) The chemistry and biology of mineralized connective tissues. Elsevier North Holland, Amsterdam, New York

    Google Scholar 

  15. Urist MR, Moss MJ, Adams JM (1964) The calcification of tendon (a triphasic local mechanism). Arch Pathol 77:594–608

    PubMed  CAS  Google Scholar 

  16. Wadkins CL (1968) Experimental factors that influence collagen calcification in vitro. Calcif Tissue Res 2:214–228

    Article  PubMed  CAS  Google Scholar 

  17. Bachra BN, Fisher HRA (1968) Mineral deposition in collagen in vitro. Calcif Tissue Res 2:343–352

    Article  PubMed  CAS  Google Scholar 

  18. Bachra BN (1972) Calcification in vitro of demineralized bone matrix: electron microscopic and chemical aspects. Calcif Tissue Res 8:287–303

    Article  PubMed  CAS  Google Scholar 

  19. Pocric B, Pucor Z (1979) Precipitation of calcium phosphates under conditions of double diffusion in collagen and gels of gelatin and agar. Calcif Tissue Int 27:171–176

    Article  Google Scholar 

  20. Shuttleworth A, Veis A (1972) The isolation of anionic phosphoproteins from bovine cortical bone via the periodate solubilization of bone collagen. Biochim Biophys Acta 257:414–420

    PubMed  CAS  Google Scholar 

  21. Spector AR, Glimcher MJ (1972) The extraction and characterization of soluble anionic phosphoproteins from bone. Biochim Biophys Acta 263:593–603

    CAS  Google Scholar 

  22. Hauschka PV, Lian JB, Gallop PM (1975) Direct identification of the calcium-binding amino acid, gamma-carboxyglutamate, in mineralized tissue. Proc Natl Acad Sci USA 72:3925–3927

    Article  PubMed  CAS  Google Scholar 

  23. Price PA, Otsuka AS, Poser JW, Kristaponis J, Raman N (1967) Characterization of a γ-carboxyglutamic acid-containing protein from bone. proc Natl Acad Sci USA 73:1447–1451

    Article  Google Scholar 

  24. Termine JD, Belcourt AB, Conn KM, Kleinman HK (1981) Mineral-and collagen-binding proteins of fetal calf bone. J Biol Chem 256:10403–10408

    PubMed  CAS  Google Scholar 

  25. Whitson SW, Harrison W, Dunlap MK, Bowers DE, Fisher LW, Robey PG, Termine JD (1984) Fetal bovine bone cells synthesize bone-specific matrix proteins. J Cell Biol 99:607–614

    Article  PubMed  CAS  Google Scholar 

  26. Nawrot CF, Campbell DJ, Schroeder JK, Valkenburg MW (1976) Dentin phosphoprotein-induced formation of hydroxyapatite during in vitro synthesis of amphorous calcium phosphate. Biochem 15:3445–3449

    Article  CAS  Google Scholar 

  27. Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26:99–105

    Article  PubMed  CAS  Google Scholar 

  28. Menanteu J, Neuman WF, Neuman MW (1982) A study of bone proteins which can prevent hydroxyapatite formation. Metab Bone Dis Rel Res 4:152–162

    Google Scholar 

  29. Romberg RW, Werness PG, Lollar P, Riggs BL, Mann KG (1985) Isolation and characterization of native adult osteonectin. J Biol Chem 260:2728–2736

    PubMed  CAS  Google Scholar 

  30. Romberg RW, Werness PG, Riggs BL, Mann KG (1986) Inhibition of hydroxyapatite crystal growth of bone-specific and other calcium-binding proteins. Biochem 25:1176–1180

    Article  CAS  Google Scholar 

  31. Termine JD, Belcourt AB, Christner PJ Conn KM, Nylen MU (1980) Properties of dissociatively extracted fetal tooth matrix proteins. I. Principal molecular species in developing bovine enamel. J Biol Chem 255:9760–9768

    PubMed  CAS  Google Scholar 

  32. Miller EJ, Rhodes (1982) Preparation and characterization of the different types of collagen. Methods Enzymol 82A:33–64

    Article  PubMed  CAS  Google Scholar 

  33. Termine JD, Eanes ED (1974) Calcium phosphate deposition from balanced salt solutions. Calc Tiss Res 15:81–84

    Article  CAS  Google Scholar 

  34. Eanes ED, Meyer JL (1977) The maturation of crystalline calcium phosphates in aqueous suspensions at physiological pH. Calcif Tissue Res 23:259–269

    Article  PubMed  CAS  Google Scholar 

  35. Meyer JL, Eanes ED (1978) A thermodynamic analysis of the amorphous-to-crystalline calcium phosphate transformation. Calcif Tissue Res 25:59–68

    Article  PubMed  CAS  Google Scholar 

  36. Doi Y, Eanes ED (1984) Transmission electron microscopic study of calcium phosphate formation in supersaturated solution seeded with apatite. Calcif Tissue Int 36:39–47

    Article  PubMed  CAS  Google Scholar 

  37. Doi Y, Eanes ED, Shimokawa H, Termine JD (1984) Inhibition of seeded growth of enamel apatite crystals by amelogenin and enamelin proteins in vitro. J Dent Res 63:98–105

    PubMed  CAS  Google Scholar 

  38. Shyu JL, Perez L, Zawcki SL, Heughehart JC, Nancollas GH (1981) The solubility of octacalcium phosphate at 37°C in the system Ca(OH)2-H3PO4-KNO3-H2O.

  39. Tung MS, Brown WE (1983) An intermediate state in hydrolysis of amorphous calcium phosphate. Calcif Tissue Int 35:783–790

    Article  PubMed  CAS  Google Scholar 

  40. Chow LC, Brown WE (1984) A physicochemical benchscale caries model. J Dent Res 63:868–873

    PubMed  CAS  Google Scholar 

  41. Doi Y, Eanes ED, Shimokawa H, Termine JD (1984) Modulation of seeded enamel apatite crystal growth in vitro by enamel matrix amelogenin and enamelin proteins. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier Science Publishers B.V.

  42. Boskey AL, Posner AS (1973) Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solution-mediated, solid-solid conversion. J Phys Chem 77:2313–2317

    Article  CAS  Google Scholar 

  43. Cheng P-T (1987) Formation of octacalcium phosphate and subsequent transformation to hydroxyapatite at low supersaturation: a model for cartilage calcification. Calcif Tissue Int 40:339–343

    Article  PubMed  CAS  Google Scholar 

  44. Mason IJ, Taylor A, Williams JG, Sage H, Hogan BL (1986) Evidence from molecular cloning that SPARC, a major product of mouse embryo parietal endoderm, is related to an endothelial cell ‘culture shock’ glycoprotein of Mr 43000. EMBO J 5:1465–1472

    PubMed  CAS  Google Scholar 

  45. Engel J, Taylor W, Paulsson M, Sage H, Hogan B (1987) Calcium binding domains and calcium-induced conformational transition of SPARC/BM-40/osteonectin, an extracellular glycorprotein expression in mineralized and nonmineralized tissues. Biochem 26:6958–6965

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doi, Y., Okuda, R., Takezawa, Y. et al. Osteonectin inhibitingde novo formation of apatite in the presence of collagen. Calcif Tissue Int 44, 200–208 (1989). https://doi.org/10.1007/BF02556565

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556565

Key words

Navigation