Skip to main content
Log in

Metabolism of dynorphin A1–13 in human CSF

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In-vitro incubation of human cerebrospinal fluid (CSF) obtained from patients ranging from 22–78 years with 10 μM of dynorphin A1–13 (Dyn A1–13) resulted in several cleavage products. Dyn A1–12 and A2–13 were identified as the major CSF metabolites by matrix-assisted laser desorption mass spectrometry (LD-MS). Further metabolites were Dyn A1–6, A2–12 and A4–12. LD-MS further suggested the formation of Dyn A1–8, A1–7, A1–10, A7–10, A3–12, A7–12, A3–13, A7–13 and A8–13. The metabolic half-life of Dyn A1–13 at 37°C was approximately 2.5 h (range 1.75–8.5 h), compared to less than one minute in plasma. The half-life of Dyn A1–13 decreased markedly with age or age-associated processes (n=20, r2=0.498). Noncompartmental kinetic analysis in the absence or presence of enzyme inhibitors (leucinethiol 10 μM, captopril 100 μM and GEMSA 20 μM) suggested that Dyn A1–13 is mainly metabolized by carboxypeptidase to A1–12 (51%) and by aminopeptidases to A2–13 (35%). The generation of A1–6 (13%) was only detected under enzyme inhibition. The extent of conversion into the main metabolites did not follow an age-associated trend, thus over-all enzyme levels but no specific enzymatic systems are elevated with age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldstein, A., Tachibana, S., Lowney, L. I., Hunkapillar, M., and Hood, L. 1979. Dynorphin-(1–13), an extraordinarily potent opiod peptide. Proc. Natl. Acad. Sci. USA, 76:6666–6670.

    Article  PubMed  CAS  Google Scholar 

  2. Herman, B. H., and Goldstein, A. 1985. Antinociception and paralysis induced by intrathecal dynorphin A. J. Pharm. Exp. Ther., 232:27–32.

    CAS  Google Scholar 

  3. Wen, H. L., and Ho, W. K. K. 1982. Suppression of withdrawal symptoms by dynorphin in heroin addicts. Eur. J. Pharmacol., 82: 183–186.

    Article  PubMed  CAS  Google Scholar 

  4. Mueller, S., and Hochhaus, G. 1995. Metabolism of dynorphin A1–13 in human blood and plasma. Pharm. Res., 12:1165–1170.

    Article  CAS  Google Scholar 

  5. Leslie, F. M., and Goldstein, A. 1982. Degradation of dynorphin A1–13 by membrane-bound rat brain enzymes. Neuropeptides, 2: 185–196.

    Article  CAS  Google Scholar 

  6. Terenius, L., and Nyberg, F. 1988. Neuropeptide-processing, converting, and-inactivating enzymes in human cerebrospinal fluid. Int. Rev. Neurobiology, 30:101–121.

    Article  CAS  Google Scholar 

  7. Nyberg, F., Nordstrom, K., and Terenius, L. 1985. Endopeptidase in human cerebrospinal fluid which cleaves proenkephalin B opioid peptides at consecutive basic amino acids. Biochem. Biophys. Res. Com., 131:1069–1074.

    Article  PubMed  CAS  Google Scholar 

  8. Persson, S., Post, C., Alari, L., Nyberg, F., and Terenius, L. 1989. Increased neuropeptide-converting enzyme activities in cerebrospinal fluid of opiate-tolerant rats. Neurosc. Lett., 107:318–322.

    Article  CAS  Google Scholar 

  9. Hazato, T., Shimamura, M., Katayama, T., Kasama, A., Nishioka, S., and Kaya, K. 1983. Enkephalin degrading enzymes in cerebrospinal fluid. Life Sciences, 33:443–448.

    Article  PubMed  CAS  Google Scholar 

  10. S. Bolton, 1990. Pharmaceutical Statistics, Dekker, New York and Basel, p. 250.

    Google Scholar 

  11. Seyfried, C. A., and Tobler, P. 1990. HPLC systems for the separation of dynorphin A (1–17) fragments and its application in enzymolysis studies with rat nerve terminal membranes. J. Chrom., 529:43–54.

    CAS  Google Scholar 

  12. Shibanoki, S., Weinberger, S. B., Ishikawa, K., and Martinez, J. L. 1991. Further characterization of the in vitro hydrolysis of [Leu]- and [Met]enkephalin in rat plasma: HPLC-ECD measurement of substrate and metabolite concentrations. Regul-Pept., 32: 267–278.

    Article  PubMed  CAS  Google Scholar 

  13. Gideon, P., Thomsen, C., Ståhlberg, F., and Henriksen, O. 1994. Cerebrospinal fluid production and dynamics in normal aging: a MRI phase-mapping study. Acta Neurol. Scand. 89:362–366.

    Article  PubMed  CAS  Google Scholar 

  14. A. J. Kenny and N. M. Hooper 1991. Peptidases involved in the metabolism of bioactive peptides. Pages 47–79. In J. H. Hendriksen (ed.), Degradation of bioactive substances: Physiology and pathophysiology, CRC Press, Inc., Boca Raton.

    Google Scholar 

  15. Lantz, I., Nyberg, F., and Terenius, L. 1991. Molecular heterogeneity of angiotensin converting enzyme in human cerebrospinal fluid. Biochem. Int., 23:941–948.

    PubMed  CAS  Google Scholar 

  16. Nyberg, F., Lyrenas, S., and Terenius, L. 1986. Assay and biochemical characterization of a dynorphin converting enzyme in human cerebrospinal fluid. NIDA Res. Monogr., 75:251–254.

    PubMed  CAS  Google Scholar 

  17. Yukhananov, R. Y., Zhai, Q. Z., Persson, S., Post, C., and Nyberg, F. 1993. Chronic administration of morphine decreases level of dynorphin A in the rat nucleus accumbens. Neuropharmacology, 32:703–709.

    Article  PubMed  CAS  Google Scholar 

  18. Takemori, A. E., Loh, H. H., and Lee, N. N. 1993. Suppression by dynorphin A and [des-Tyr1] dynorphin A peptides of the expression of opiate withdrawal and tolerance in morphine-dependent mice. J. Pharm. Exp. Ther., 266:121–124.

    CAS  Google Scholar 

  19. Shukla, V. K., and Lemaire, S. 1994. Non-opioid effects of dynorphins: possible role of the NMDA-receptor., TIPS, 15:420–424.

    PubMed  CAS  Google Scholar 

  20. Persson, S., Le Greves, M., Thörnwall, M., Eriksson, U., Silberring, J., and Nyberg, F. 1995. Neuropeptide converting, and processing enzymes in the spinal cord and cerebrospinal fluid. Pages 111–130in Nyberg, F., Sharma, H. S., Wiesenfeld-Hallin, Z. (eds), Progress in brain research, Vol 104, Elsevier Science, Amsterdam.

    Google Scholar 

  21. Csuhai, E., Little, S. S., and Hersh, L. B. 1995. Inactiviation of neuropeptides. Pages 131–142,in Byberg, F., Sharma, H. S., Wiesenfeld-Hallin, Z. (eds), Progress in brain research, Vol 104, Elsevier Science, Amsterdam.

    Google Scholar 

  22. Benter, I. F., Hirsh, E. M., Tuchman, A. J., Ward, P. E. 1990. Nterminal degradation of low molecular weight opioid peptides in human cerebrospinal fluid. Biochem. Pharmacol. 40:465–472.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, S., Grundy, B.L. & Hochhaus, G. Metabolism of dynorphin A1–13 in human CSF. Neurochem Res 21, 1213–1219 (1996). https://doi.org/10.1007/BF02532398

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02532398

Key Words

Navigation