Skip to main content
Log in

Sigma1 binding in a human neuroblastoma cell line

  • Stimulatory Effects of Opioids
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Behaviorally, sigma1 agents modulate opioid analgesia. To examine possible mechanisms responsible for these interactions, we have identified a cell line containing both sigma1 and opioid receptors. [3H](+)-pentazocine binding in BE(2)-C human neuroblastoma cells is high affinity (KD 3.4±0.7 nM) and high density (Bmax 2.98±0.14 pmol/mg protein). Competition studies reveal a selectivity profile similar to that of sigma1 sites in guinea pig brain. (+)-Pentazocine has no effect upon either basal or forskolin-stimulated cyclase in the BE(2)-C cells, but cAMP accumulation is inhibited by the morphine, DPDPE and naloxone benzoylhydrazone. (+)-Pentazocine at concentrations as high as 10 μM does not affect this opioid effect, implying that sigma1/opioid interactions are not mediated at the level of the cell. This suggests that their behavioral interactions result from interacting neural circuits. Although (+)-pentazocine is without effect in the cyclase system, it does block carbachol-stimulated phosphoinositol turnover (IC50 6.5±1.14 μM). The specificity of the effect is confirmed by the ability of haloperidol (1 μM) to shift the IC50 value of (+)-pentazocine 2-fold to the right.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Martin, W. R., Eades, C. G., Thompson, J. A., Huppler, R. E., and Gilbert, P. E. 1976. The effects of morphine- and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J. Pharmacol. Exp. Ther. 197:517–532.

    PubMed  CAS  Google Scholar 

  2. Quirion, R., Bowen, W. D., Itzhak, Y., Junien, J. L., Musacchio, J. M., Rothman, R. B., Tam, S. W., and Taylor, D. P. 1992. A proposal for the classification of sigma binding sites. Trends Pharmacol. Sci. 13:85–86.

    Article  PubMed  CAS  Google Scholar 

  3. Musacchio, J. M., Klein, M., and Canoll, P. D. 1989. Dextromethorphan and sigma ligands: common sites but diverse effects. Life Sci. 45:1721–1732.

    Article  PubMed  CAS  Google Scholar 

  4. Hellewell, S. B., and Bowen, W. D. 1990. A sigma-like binding site in rat pheochromocytoma (PC12) cells: decreased affinity for (+)-benzomorphans and lower molecular weight suggest a different sigma receptor form from that of guinea pig brain. Brain Res. 527:244–253.

    Article  PubMed  CAS  Google Scholar 

  5. Itzhak, Y., Stein, I., Zhang, S. H., Kassim, C. O., and Cristante, D. 1991. Binding of sigma-ligands to C57BL/6 mouse brain membranes: effects of monoamine oxidase inhibitors and subcellular distribution studies suggest the existence of sigma-receptor subtypes. J. Pharmacol. Exp. Ther. 257:141–148.

    PubMed  CAS  Google Scholar 

  6. Wu, X. Z., Bell, J. A., Spivak, C. E., London, E. D., and Su, T. P. 1991. Electrophysiological and binding studies on intact NCB-20 cells suggest presence of a low affinity sigma receptor. J. Pharmacol. Exp. Ther. 257:351–359.

    PubMed  CAS  Google Scholar 

  7. Bowen, W. D., Hellewell, S. B., and McGarry, K. A. 1989. Evidence for a multi-site model of the rat brain sigma receptor. Eur. J. Pharmacol. 163:309–318.

    Article  PubMed  CAS  Google Scholar 

  8. Bowen, W. D., DeCosta, B., Hellewell, S. B., Thurkauf, A., Walker, J. M., and Rice, K. C. 1990. Characterization of [3H] (+)-pentazocine, a highly selective sigma ligand. Prog. Clin. Biol. Res. 328:117–120.

    PubMed  CAS  Google Scholar 

  9. Yang, Z. W., Paleos, G. A., and Byrd, J. C. 1989. Expression of (+)-3-PPP binding sites in the PC12 pheochromocytoma cell line. Eur. J. Pharmacol. 164:607–610.

    Article  PubMed  CAS  Google Scholar 

  10. Georg, A., and Friedl, A. 1991. Identification and characterization of two sigma-like binding sites in the mouse neuroblastoma x rat glioma hybrid cell line NG108-15. J. Pharmacol. Exp. Ther. 259: 479–483.

    PubMed  CAS  Google Scholar 

  11. Georg, A., and Friedl, A. 1992. Characterization of specific binding sites for [3H]-1,3-di-o-tolyl-guanidine (DTG) in the rat glioma cell line C6-BU-1. Glia 6:258–263.

    Article  PubMed  CAS  Google Scholar 

  12. Taylor, J. E., and Keyes, S. R. 1992. Identification and characterization of σ recognition sites on established tumors and tumor cell lines. Society for Neuroscience Abstracts 18:455 (Abstract).

    Google Scholar 

  13. Vilner, B. J., and Bowen, W. D. 1993. Sigma receptor-active neuroleptics are cytotoxic to C6 glioma cells in culture. Eur. J. Pharmacol. 244:199–201.

    Article  PubMed  CAS  Google Scholar 

  14. Vilner, B. J., John, C. S., and Bowen, W. D. 1995. Sigma-1 and sigma-2 receptors are expressed in a wide variety of human and rodent tumor cell lines. Cancer Res. 55:408–413.

    PubMed  CAS  Google Scholar 

  15. Chavkin, C. 1990. The sigma enigma: biochemical and functional correlates emerge for the haloperidol-sensitive sigma binding site. Trends Pharmacol. Sci. 11:213–215.

    Article  PubMed  CAS  Google Scholar 

  16. Chien, C. C., and Pasternak, G. W. 1994. Selective antagonism of opioid analgesia by a sigma system. J. Pharmacol. Exp. Ther. 271:1583–1590.

    PubMed  CAS  Google Scholar 

  17. Chien, C. C., and Pasternak, G. W. 1993. Functional antagonism of morphine analgesia by (+)-pentazocine: evidence for an antiopioid sigma 1 system. Eur. J. Pharmacol. 250:R7–8.

    Article  PubMed  CAS  Google Scholar 

  18. Chien, C. C., and Pasternak, G. W. 1995. Sigma antagonists potentiate opioid analgesia in rats. Neurosci. Lett. 190:137–139.

    Article  PubMed  CAS  Google Scholar 

  19. Ciccarone, V., Spengler, B. A., Meyers, M. B., Biedler, J. L., and Ross, R. A. 1989. Phenotypic diversification in human neuroblactoma cells: Expression of distinct neural crest lineages. Cancer Res. 49:219–225.

    PubMed  CAS  Google Scholar 

  20. Standifer, K. M., Cheng, J., Brooks, A. I., Honrado, C. P., Su, W., Visconti, L. M., Biedler, J. L., and Pasternak, G. W. 1994. Biochemical and pharmacological characterization of mu, delta and kappa 3 opioid receptors expressed in BE(2)-C neuroblastoma cells. J. Pharmacol. Exp. Ther. 270:1246–1255.

    PubMed  CAS  Google Scholar 

  21. Standifer, K. M., Pitha, J., and Baker, S. P. 1989. Carbostyril-based beta-adrenergic agonists: evidence for long lasting or apparent irreversible receptor binding and activation of adenylate cyclase activityin vitro. Naunyn-Schmiedebergs Arch. Pharmacol. 339:129–137.

    PubMed  CAS  Google Scholar 

  22. Bolden, C. P., and Baker, S. P. 1990. Effect of acetylethylcholine mustard on muscarinic receptor coupled attenuation of cAMP formation in intact GH3 cells. J. Pharmacol. Exp. Ther. 254:136–141.

    PubMed  CAS  Google Scholar 

  23. Berridge, M. J., Downes, C. P., and Hanley, M. R. 1982. Lithium amplifics agonist-stimulated phosphatidylinositol responses in brain and salivary glands. BioChem. J. 206:587–595.

    PubMed  CAS  Google Scholar 

  24. Costa, L. G., Kaylor, G., and Murphy, S. D. 1986. Carbachol- and norepinephrine-stimulated phosphoinositide metabolism in rat brain: effect of chronic cholinesterase inhibition. J. Pharmacol. Exp. Ther. 239:32–37.

    PubMed  CAS  Google Scholar 

  25. Balduini, W., Murphy, S. D., and Costa, L. G. 1987. Developmental changes in muscarinic receptor-stimulated phosphoinositide metabolism in rat brain. J. Pharmacol. Exp. Ther. 241:421–427.

    PubMed  CAS  Google Scholar 

  26. Candura, S. M., Coccini, T., Manzo, L., and Costa, L. G. 1990. Interaction of sigma-compounds with receptor-stimulated phosphoinositide metabolism in the rat brain. J. of NeuroChem. 55: 1741–1748.

    Article  CAS  Google Scholar 

  27. Cheng, Y. C., and Prusoff, W. H. 1973. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 percent inhibition (IC50) of an enzymatic reaction. Biochem. Pharmacol. 22:3099–3108.

    Article  PubMed  CAS  Google Scholar 

  28. Chou, T. C. 1974. Relationships between inhibition constants and fractional inhibition in enzyme-catalyzed reactions with different number of reactants, different reaction mechanisms and different types and mechanisms of inhibition. Mol. Pharmacol. 10:235–247.

    PubMed  CAS  Google Scholar 

  29. Galper, J. B., Klein, W., and Catterall, W. A. 1977. Muscarinic acetylcholine receptors in developing chick heart. J. Biol. Chem. 252:8692–8699.

    PubMed  CAS  Google Scholar 

  30. Weiland, G. A., and Molinoff, P. B. 1981. Quantitative analysis of drug receptor interactions: i) Determination of kinetic and equilibrium properties. Life Sci. 29:313–330.

    Article  PubMed  CAS  Google Scholar 

  31. De Costa, B. R., Bowen, W. D., Hellewell, S. B., Walker, J. M., Thurkauf, A., Jacobson, A. E., and Rice, K. C. 1989. Synthesis and evaluation of optically pure [3H](+)-pentazocine, a highly potent and selective radioligand for sigma receptors. FEBS Letters 251:53–58.

    Article  PubMed  Google Scholar 

  32. Walker, J. M., Bowen, W. D., Goldstein, S. R., Roberts, A. H., Patrick, S. L., Hohmann, A. G., and DeCosta, B. 1992. Autoradiographic distribution of [3H](+)-pentazocine and [3H]1,3-di-o-tolylguanidine (DTG) binding sites in guinea pig brain: a comparative study. Brain Res. 581:33–38.

    Article  PubMed  CAS  Google Scholar 

  33. Gundlach, A. L., Largent, B. L., and Snyder, S. H. 1986. Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)3H-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine. J. Neurosci. 6:1757–1770.

    PubMed  CAS  Google Scholar 

  34. Zhou, G. Z., Katki, A. G., Schwarz, S., Munson, P. J., and Rodbard, D. 1991. Quantitative characterization of multiple binding sites for phencyclidine and N-allylnormetazocine in membranes from rat and guinea pig brain. Neuropharmacol. 30:775–786.

    Article  CAS  Google Scholar 

  35. Karbon, E. W., and Enna, S. J. 1991. Pharmacological characterization of sigma binding sites in guinea pig brain membranes. Adv. Exp. Med. Biol. 287:51–59.

    Article  PubMed  CAS  Google Scholar 

  36. Chien, C. C., and Pasternak, G. W. 1995. (−)-Pentazocine analgesia in mice: interactions with a σ receptor system. Eur. J. Pharmacol. 294:303–308.

    Article  PubMed  CAS  Google Scholar 

  37. Sharma, S. K., Nirenberg, M., and Klee, W. 1975. Morphine receptors as regulators of adenylate cyclase activity. Proc. Nat. Acad. Sci. USA 72:590–594.

    Article  PubMed  CAS  Google Scholar 

  38. Blume, A. J., Lichstein, D., and Boone, G. 1979. Coupling of opiate receptors to adenylate cyclase: Requirements for Na+ and GTP. Proc. Nat. Acad. Sci. USA 76:5626–5630.

    Article  PubMed  CAS  Google Scholar 

  39. Frey, E. A., and Kebabian, J. W. 1984. A μ-opiate receptor in 7315c tumor tissue mediates inhibition of immunoreactive prolactin release and adenylate cyclase activity. Endocrinology 115: 1797–1804.

    Article  PubMed  CAS  Google Scholar 

  40. Yu, V. C., Richards, M. L., and Sadee, W. 1986. A human neuroblastoma cell line expresses μ and σ opioid receptor sites. J. Biol. Chem. 262:1065–1070.

    Google Scholar 

  41. Kazmi, S. M., and Mishra, R. K. 1987. Comparative pharmacological properties and functional coupling of μ and σ opioid receptor sites in human neuroblastoma SH-SY5Y cells. Mol. Pharmacol. 32:109–118.

    PubMed  CAS  Google Scholar 

  42. Costa, E. M., Hoffman, B. B., and Loew, G. H. 1992. Opioid agonist binding and responses in SH-SY5Y cells. Life Sci. 50:73–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavril W. Pasternak.

Additional information

Special issue dedicated to Dr. Eric J. Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryan-Moro, J., Chien, CC., Standifer, K.M. et al. Sigma1 binding in a human neuroblastoma cell line. Neurochem Res 21, 1309–1314 (1996). https://doi.org/10.1007/BF02532372

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02532372

Key words

Navigation