Skip to main content
Log in

Increase in femoral bone mass by ipriflavone alone and in combination with 1α-hydroxyvitamin D3 in growing rats with skeletal unloading

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

We assessed the possibility that ipriflavone treatment might result in bone restoration in immobilized rats. We also investigated the effect of combined treatment with ipriflavone and vitamin D3 on the bone. Male Sprague-Dawley rats, 6 weeks of age, were subjected to unilateral sciatic neurectomy. Three weeks after the operation, ipriflavone (100 mg/kg), 1α-hydroxyvitamin D3 [1α(OH)D3, 25 ng/kg], or both ipriflavone and 1α(OH)D3 were orally administered every day for 12 or 24 weeks. After 12 weeks of treatment, only the group receiving combined treatment with ipriflavone and 1α(OH)D3 showed increases in total femur calcium content (+16.4%, compared with the control). After 24 weeks, both animals treated with ipriflavone alone and those that had received the combination of ipriflavone and 1α(OH)D3 showed significant increases in femur calcium content (+18.0% and +23.8%, respectively). In these treatment groups, X-ray analysis revealed an increase in bone mineral density over the entire length of the femur, and an increase in cortical diameter at the midshaft without affecting medullary width. Administration of 1α(OH)D3 (25 ng/kg) alone had no effect. Body weight, femur length, and serum markers of calcium and bone metabolism were not affected in any group. We evaluated the relationship between ipriflavone and vitamin D3 in bone cells in a culture system using rat bone marrow stromal cells in which the cells subsequently form mineralized bone-like tissue. Continuous treatment with ipriflavone (10−5 M) for 21 days resulted in an increase in osteocalcin secretion, and enhanced its response to 1α,25-dihydroxyvitamin D3 (10−11 M-10−8 M). These findings indicate that ipriflavone treatment increases the femoral bone mass in immobilized rats. In addition, a low dose of 1α(OH)D3, which did not induce hypercalcemia, in combination with ipriflavone, augmented the stimulatory effect of ipriflavone alone on the bone mass, possibly due to a direct effect of each agent on osteoblastic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reginster JYL (1993). Ipriflavone: pharmacological properties and usefulness in postmenopausal osteoporosis. Bone Miner 23:223–232

    Article  PubMed  CAS  Google Scholar 

  2. Tsuda M, Kitazaki T, Ito T, Fujita T (1986) The effect of ipriflavone (TC-80) on bone resorption in tissue culture. J Bone Miner Res 1:207–211

    PubMed  CAS  Google Scholar 

  3. Notoya K, Yoshida K, Taketomi S, Yamazaki, I, Kumegawa M (1993) Inhibitory effect of ipriflavone on osteoclast mediated bone resorption and new osteoclast formation in long-term cultures of mouse unfractionated bone cells. Calcif Tissue Int 53:206–209

    Article  PubMed  CAS  Google Scholar 

  4. Albanese CV, Cudd A, Argentino L, Zambonin-Zallone A, MacIntyne I (1994) Ipriflavone directly inhibits osteoclastic activity. Biochem Biophys Res Commun 199:930–936

    Article  PubMed  CAS  Google Scholar 

  5. Benvenuti S, Tanini A, Frediani U, Masi L, Casano R, Bufalino L, Serio M, Brandi ML (1991) Effects of ipriflavone and its metabolites on a clonal osteoblastic cell line. J Bone Miner Res 6:987–996

    PubMed  CAS  Google Scholar 

  6. Cheng SL, Zhang SF, Nelson TL, Warlow PM, Civitelli R (1994) Stimulation of human osteoblast differentiation and function by ipriflavone and its metabolites. Calcif Tissue Int 55:356–362

    Article  PubMed  CAS  Google Scholar 

  7. Notoya K, Yoshida K, Tsukuda R, Taketomi S (1994) Effect of ipriflavone on expression of markers characteristic of the osteoblastic phenotype in rat bone marrow stromal cell culture. J Bone Miner Res 9:395–400

    PubMed  CAS  Google Scholar 

  8. Ozawa H, Nakamura H, Irie K, Irie M (1992) Histochemical and fine structural study of bone of ipriflavone-treated rats. Calcif Tissue Int 51 (suppl 1):S21-S26

    Article  PubMed  CAS  Google Scholar 

  9. Turner RL, Bell NH (1986) The effects of immobilization on bone histomorphometry in rats. J Bone Miner Res 1:399–407

    PubMed  CAS  Google Scholar 

  10. Weinreb M, Rodan GA, Thompson DD (1989) Osteopenia in the immobilized rat hind limb is associated with increased bone resorption and decreased bone formation. Bone 10:187–194

    Article  PubMed  CAS  Google Scholar 

  11. Wakley GK, Portwood JS, Turner RL (1992) Disuse osteopenia is accompanied by downregulation of gene expression for bone proteins in growing rats. Am J Physiol 263:E1029-E1034

    PubMed  CAS  Google Scholar 

  12. Machwate M, Zerath e, Holy X, Hott M, Modrowski D, Malouvier A, Marie PJ (1993) Skeletal unloading in rat decreases proliferation of rat bone and marrow-derived osteoblastic cells. Am J Physiol 264:E790-E799

    PubMed  CAS  Google Scholar 

  13. Keila S, Pitaru S, Grosskopf A, Weinreb M (1994) Bone marrow from mechanically unloaded rat bones expresses reduced osteogenic capacity in vitro. J Bone Miner Res 9:321–327

    PubMed  CAS  Google Scholar 

  14. Orimo H, Shiraki M, Hayashi Y, Hoshino T, Onaya T, Miyazaki S, Kurosawa H, Nakamura T, Ogawa N (1994) Effects of 1α-hydroxyvitamin D3 on lumbar bone mineral density and vertebral fractures in patients with postmenopausal osteoporosis. Calcif Tissue Int 54:370–376

    Article  PubMed  CAS  Google Scholar 

  15. Pike JW (1992) Molecular mechanisms of cellular response to the vitamin D3 hormone. In: Coe FC, Favus MJ (eds) Disorders of bone and mineral metabolism. Raven Press, New York, pp 163–193

    Google Scholar 

  16. Takagi T, Yamamoto T, Asano S, Tamaki H (1993) Effect of prostaglandin D2 on the femoral bone mineral density in ovariectomized rats. Calcif Tissue Int 52:442–446

    Article  PubMed  CAS  Google Scholar 

  17. Yamazaki I, Yamaguchi H (1989) Characteristics of an ovariectomized osteopenic rat model. J Bone Miner Res 4:13–22

    PubMed  CAS  Google Scholar 

  18. Connerty HV, Briggs AR (1966) Determination of serum calcium by means of orthocresolphthalein complexone. Am J Clin Pathol 45:290–296

    PubMed  CAS  Google Scholar 

  19. Lowry OH, Roberts NR, Wu M, Hixton WS, Crawford EJ (1954) The quantitative histochemistry of brain. II. Enzyme measurements. J Biol Chem 207:19–37

    PubMed  CAS  Google Scholar 

  20. Maniatopoulos C, Sodek J, Melcher AH (1988) Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res 254:317–330

    Article  PubMed  CAS  Google Scholar 

  21. Kimmel DB, Wronski TJ (1990) Nondestructive measurement of bone mineral in femurs from ovariectomized rats. Calcif Tissue Int 46:101–110

    Article  PubMed  CAS  Google Scholar 

  22. Geusens P, Dequeker J, Bramm E (1990) Effect of ovariectomy and pamidronate on bone mineral content in rats: evaluation by single photon absorptiometry and radiogrammetry. Calcif Tissue Int 47:243–250

    Article  PubMed  CAS  Google Scholar 

  23. Griffin MG, Kimble R, Hopfer W, Pacifici R (1993) Dualenergy x-ray absorptiometry of the rat: accuracy, precision, measurements of bone loss. J Bone Miner Res 8:795–800

    PubMed  CAS  Google Scholar 

  24. Rosen HN, Middlebrooks VL, Sullivan EK, Rosenblatt M, Maitland LA, Moses AC, Greenspan SL (1994) Subregion analysis of the rat femur: a sensitive indicator of changes in bone density following treatment with thyroid hormone or bisphosphonates. Calcif Tissue Int 55:173–175

    Article  PubMed  CAS  Google Scholar 

  25. Watts NB, Harris ST, Genant HK, Wasnich RD, Miller PD, Jackson RD, Licata AA, Ross P, Woodson GC, Yanover MJ, Mysiw WJ, Kohse L, Rao MB, Steiger P, Richmond B, Chestnut CH (1990) Intermittent cyclical etidronate treatment of postmenopausal osteoporosis. N Engl J Med 323:73–79

    Article  PubMed  CAS  Google Scholar 

  26. Fromm GA, Vega E, Plantalech L, Galich AM, Mautalen CA (1991) Differential action of pamidronate on trabecular and cortical bone in women with involutional osteoporosis. Osteoporosis Int 1:129–133

    Article  CAS  Google Scholar 

  27. Malluche HH, Faugere MC (1990) Bone biopsy: histology and histomorphometry of bone. In: Avioli LV, Krane SM (eds) Metabolic bone disease and clinically related disorders. WB Saunders Co, Philadelphia, pp 283–328

    Google Scholar 

  28. Foldes I, Rapcsak M, Szoor A, Gyarmati J, Sziliagyi T (1988) The effect of ipriflavone treatment on osteoporosis induced by immobilization. Acta Morphol Hung 36:79–93

    PubMed  CAS  Google Scholar 

  29. Hayes WC, Gerhart TN (1985) Biomechanics of bone: applications for assessment of bone strength. In: Peck WA (ed) Bone and mineral research, annual 3, Elsevier Science Publishers, Amsterdam, pp 259–294

    Google Scholar 

  30. Lindgren JU, Lindholm TS (1979) Effect of 1-alpha-hydroxy-vitamin D3 on osteoporosis in rats induced by oophorectomy. Calcif Tissue Int 27:161–164

    Article  PubMed  CAS  Google Scholar 

  31. Marie PJ, Travers R (1983) Continuous infusion of 1,25-dihydroxyvitamin D3 stimulates bone turnover in the normal young mouse. Calcif Tissue Int 35:418–425

    Article  PubMed  CAS  Google Scholar 

  32. Larsson SE, Lorentzon R, Boquist L (1977) Low doses of 1,25-dihydroxycholecalciferol increase mature bone mass in adult normal rats. Clin Orthop Rel Res 127:228–235

    CAS  Google Scholar 

  33. Malluche HH, Matthews C, Faugere M-C, Fanti P, Endres DB, Friedler RM (1986) 1,25-dihydroxyvitamin D maintains bone cell activity, and parathyroid hormone modulates bone cell number in dog. Endocrinology 119:1298–1304

    Article  PubMed  CAS  Google Scholar 

  34. Boyce RW, Weisbrode SE (1983) Effect of dietary calcium on the response of bone to 1,25(OH)2D3. Lab Invest 48:683–689

    PubMed  CAS  Google Scholar 

  35. Okumura H, Yamamuro T, Kasai R, Hayashi T, Tada K, Nishii Y (1988) Effect of 1α-hydroxyvitamin D3 on osteoporosis induced by immobilization combined with ovariectomy in rats. Bone 8:351–355

    Article  Google Scholar 

  36. Gallager JC, Jerpbak CM, Jee WSS, Johnson HA, DeLuca HF, Riggs BL (1982) 1,25-dihydroxyvitamin D3 short- and long-term effects on bone and calcium metabolism in patients with postmenopausal osteoporosis. Proc Natl Acad Sci USA 79: 3325–3329

    Article  Google Scholar 

  37. Silver J (1992) Regulation of parathyroid hormone synthesis and secretion. In: Coe FC, Favus MJ (eds) Disorders of bone and mineral metabolism. Raven Press, New York, pp 83–106

    Google Scholar 

  38. Perault-Staub AM, Staub JF, Milhaud G (1990) Extracellular calcium homeostasis. In: Peck WA (ed) Bone and mineral research, annual 7. Elsevier Science, Amsterdam, pp 1–102

    Google Scholar 

  39. Garnero P, Grimaux M, Demiaux B, Preaudat C, Seguin P, Delmas PD (1992) Measurement of serum osteocalcin with a human-specific two-site immunoradiometric assay. J Bone Miner Res 7:1389–1398

    Article  PubMed  CAS  Google Scholar 

  40. Yamazaki I, Kinoshita M (1986) Calcitonin secreting property of ipriflavone in the presence of estrogen. Life Sci 38:1535–1541

    Article  PubMed  CAS  Google Scholar 

  41. Canick JA, Makris A, Gunsalus GL, Ryan KJ (1979) Testicular aromatization in immature rats: localization and stimulation after gonadotropin administration in vivo. Endocrinology 104:285–288

    Article  PubMed  CAS  Google Scholar 

  42. De Jong FH, Hey AH, Van der Molen HJ (1973) Effect of gonadotropins on the secretion of estradiol-17β and testosterone by the rat testis. J Endocrinol 57:277–284

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Notoya, K., Yoshida, K., Rsukuda, R. et al. Increase in femoral bone mass by ipriflavone alone and in combination with 1α-hydroxyvitamin D3 in growing rats with skeletal unloading. Calcif Tissue Int 58, 88–94 (1996). https://doi.org/10.1007/BF02529729

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02529729

Key words

Navigation