Skip to main content
Log in

Gene targeting in plants using theAgrobacterium vector system

  • Review
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

In the past decade several methods have been developed for the introduction of foreign DNA into plant cells to obtain transgenic plants. In some of these methods, purified DNA is directly introduced into protoplasts that for some species can be regenerated into mature plants. The more commonly used protocols, however, employ the natural capacity ofAgrobacterium tumefaciens to transfer a defined peice of DNa, called T-DNA, to the nucleus of plant cells that are more easy to regenerate than protoplasts. In plant cells, like in animal cells, foreign DNA (including T-DNA) is readily inserted into the genome via illegitimates recombination. In contrast, targeted integration via homologous recombination, referred to as ‘gene targeting’, can only be obtained at relatively low frequencies. Nevertheless, gene targeting has become a standard strategy for reverse genetics studies in animals. In plants, the occurrence of gene targeting was only reported recently. This review focuses on the use of theAgrobacterium vector system to achieve gene targeting in plants. Recent experimental data concerning gene targeting in plants are presented and the overall suitability ofAgrobacterium T-DNA transfer for this purpose is assessed in light of contemporary views on the mechanism of T-DNA transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adair, G.M., Nairn, R.S., Wilson, J.H., Seidman, M.M., Brotherman, K.A., MacKinnon, C. and Scheerer, J.B. (1989) Targeted homologous recombination at the endogenous adenine phosphoribosyl-transferase locus in Chinese hamster cells.Proc. Natl Acad. Sci. USA 86, 4574–8.

    Article  CAS  PubMed  Google Scholar 

  • Buerstedde, J.-M. and Takede, S. (1991) Increased ratio of targeted to random integration after transfection of chicken B cell lines.Cell 67, 179–88.

    Article  CAS  PubMed  Google Scholar 

  • Capecchi, M.R. (1989) Altering the genome by homologous recombination.Science 244, 1288–92.

    Article  CAS  PubMed  Google Scholar 

  • Czernilofsky, A.P., Hain, R., Herrera-Estrella, L., Lörz, H., Goyvaerts, E., Baker, B.J. and Schell, J. (1986) Fate of selectable marker DNA integrated into the genome ofNicotiana tabacum.DNA 5, 101–13.

    Article  CAS  PubMed  Google Scholar 

  • Damm, B., Schmidt, R. and Willmitzer, L. (1989) Efficient transformation ofArabidopsis thaliana using direct gene transfer to protoplasts.Mol. Gen. Genet. 217, 6–12.

    Article  CAS  PubMed  Google Scholar 

  • Dean, C., Jones, J., Favreau, M., Dunsmuir, P. and Bedbrook, J. (1988) Influence of flanking sequences on variability in expression levels of an introduced gene in transgenic tabacco plants.Nucl. Acids Res. 16, 9267–83.

    CAS  PubMed  Google Scholar 

  • Deroles, S. C. and Gardner, R. C. (1988) Analysis of the T-DNA structure in a large number of transgenic petunias generated byAgrobacterium-mediated transformation.Pl. Mol. Biol. 11, 365–77.

    Article  CAS  Google Scholar 

  • Furner, I. J. Higgins, E.S. and Berrington, A.W. (1989) Singlestranded DNA transforms plant protoplasts.Mol. Gen. Genet. 220, 65–8.

    Article  CAS  Google Scholar 

  • Gasser, C.S. and Fraley, R.T. (1989) Genetically engineering plants for crop improvement.Science 244, 1293–9.

    Article  CAS  PubMed  Google Scholar 

  • Gheysen, G., van Montagu, M. and Zambryski, P. (1987) Integration ofAgrobacterium tumefaciens transfer DNA (T-DNA) involves rearrangements of target plant DNA sequences.Proc. Natl Acad. Sci. USA 84, 6169–73.

    Article  CAS  PubMed  Google Scholar 

  • Gheysen, G., Villarroel, R. and van Montagu, M. (1991) Illegitimate recombination in plants: a model for T-DNA integration.Gen. Devel. 5, 287–97.

    CAS  Google Scholar 

  • Hain, R., Stabel, P., Czernilofsky, A.P., Steinbiß, H.H., Herrera-Estrella, L. and Schell, J. (1985) Uptake, integration, expression and genetic transmission of a selectable chimeric gene by plant protoplasts.Mol. Gen. Genet. 199, 161–8.

    Article  CAS  Google Scholar 

  • Halfter, U., Morris, P.-C. and Willmitzer, L. (1992) Gene targeting inArabidopsis thaliana.Mol. Gen. Genet. 231, 186–93.

    CAS  PubMed  Google Scholar 

  • Hasty, P., Riveraperez, J. and Bradley, A. (1991a) The length of homology required for gene targeting in embryonic stem cells.Mol. Cell. Biol. 11, 5586–91.

    CAS  PubMed  Google Scholar 

  • Hasty, P., Riveraperez, J., Chang, C. and Bradley, A. (1991b). Target frequency and integration pattern for insertion and replacement vectors in embryonic stem cells.Mol. Cell. Biol. 11, 4509–17.

    CAS  PubMed  Google Scholar 

  • Hepburn, A.G., Clarke, L.E., Pearson, L. and White, J. (1983) The role of cytosine methylation in the control of nopaline synthase gene expression in a plant tumor.J. Mol. Appl. Genet. 2, 315–29.

    CAS  PubMed  Google Scholar 

  • Hinnen, A., Hicks, J.B. and Fink, G.R. (1978) Transformation of yeast.Proc. Natl Acad. Sci. USA 75, 1929–33.

    Article  CAS  PubMed  Google Scholar 

  • Horsch, R.B., Fry, J.E., Hoffmann, N.L., Elchholtz, D., Rogers, S.G. and Fraley, R.T. (1985) A simple and general method for transferring genes into plants.Science 227, 1229–31.

    Article  CAS  Google Scholar 

  • Howard, E. and Citovsky, V. (1990) The emerging structure of theAgrobacterium T-DNA transfer complex.BioEssays 12, 103–8.

    Article  CAS  Google Scholar 

  • Janssen, B.J. and Gardner, R.C. (1990) Localized transient expression of Gus in leaf discs following cocultivation withAgrobacterium.Pl. Mol. Biol. 14, 61–72.

    Article  CAS  Google Scholar 

  • Jones, J.D.C., Gilbert, D.E., Grady, K.L. and Jorgensen, R.A. (1987) T-DNA structure and gene expression inPetunia plants transformed byAgrobacterium tumefaciens C58 derivatives.Mol. Gen. Genet. 207, 478–85.

    Article  CAS  Google Scholar 

  • Kanemoto, R.H., Powell, A.T., Akiyoshi, D.E., Regier, D.A., Kersteller, R.A., Nester, E.W., Hawes, M.C. and Gordon, M.P. (1989) Nucleotide sequence and analysis of the plant inducible locuspinF fromAgrobacterium tumefaciens.J. Bacteriol. 171, 2506–12.

    CAS  PubMed  Google Scholar 

  • Kim, H.-S. and Smithies, O. (1988) Recombinant fragment assay for gene targeting based on the polymerase chain reaction.Nucl. Acids Res. 16, 8887–903.

    CAS  PubMed  Google Scholar 

  • Klein, T.M., Harper, E.C., Svab, Z., Sanford, J.C., Fromm, M.E. and Maliga, P. (1988) Stable genetic transformation of intactNicotiana cells by the particle bombardment process.Proc. Natl Acad. Sci. USA 85, 8502–5.

    Article  CAS  PubMed  Google Scholar 

  • Krens, F.A., Molendijk, L., Wullems, G.J. and Schilperoort, R.A. (1982)In vitro transformation of plant protoplasts with Ti-plasmid DNA.Nature 296, 72–4.

    Article  CAS  Google Scholar 

  • Krens, F.A., Mans, R.W.M., van Slogteren, T.M.S., Hoge, J.H.C., Wullems, G.J. and Schilperoort, R.A. (1985) Structure and expression of DNA transferred to tobacco via transformation of protoplasts with Ti-plasmid DNA: cotransfer of T-DNA and non-T-DNA sequences.Pl. Mol. Biol. 5, 223–34.

    Article  CAS  Google Scholar 

  • Lebeurier, G., Hirth, L., Hohn, B. and Hohn, T. (1982)In vivo recombination of cauliflower mosaic virus DNA.Proc. Natl Acad. Sci. USA 79, 2932–6.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K.Y., Townsend, J., Tepperman, J., Black, M., Chui, C.F., Mazur, B., Dunsmuir, P. and Bedbrook, J. (1988) The molecular basis of sulfonylurea herbicide resistance in tobacco.EMBO J. 7, 1241–8.

    CAS  PubMed  Google Scholar 

  • Lee, K.Y., Lund, P., Lowe, K. and Dunsmuir, P. (1990) Homologous recombination in plant cells afterAgrobacterium-mediated transformation.Pl. Cell. 2, 415–25.

    Article  CAS  Google Scholar 

  • Leutwiler, L.S., Hough, B.R. and Meyerowitz, E.M. (1984) The DNA ofArabidopsis thaliana.Mol. Gen. Genet. 194, 15–23.

    Article  CAS  Google Scholar 

  • Linn, F., Heidmann, I., Saedler, H. and Meyer, P. (1990) Epigenetic changes in expression of the maizeA1 gene inPetunia hybrida: role of numbers of integrated gene copies and state of methylation.Mol. Gen. Genet. 222, 329–36.

    Article  CAS  PubMed  Google Scholar 

  • Mansour, S.L., Thomas, K.R. and Capecchi, M.R. (1988) Disruption of the proto-oncogeneint-2 in mouse embryoderived stem cells: a general strategy for targeting mutations to non-selectable genes.Nature 336, 348–52.

    Article  CAS  PubMed  Google Scholar 

  • Mansour, S.L. (1990) Gene targeting in murine embryonic stem cells—introduction of specific alterations into the mammalian genome.Genet. Anal. Tech. Appl. 7, 219–27.

    Article  CAS  PubMed  Google Scholar 

  • Marton, L., Wullems, G.J., Molendijk, L. and Schilperoort, R.A. (1979)In vitro transformation of cultured cells fromNicotiana tabacum byAgrobacterium tumefaciens.Nature 277, 129–31.

    Article  Google Scholar 

  • Matsumoto, S., Ito, Y., Hosoi, T., Takahashi, Y. and Machida, Y. (1990) Integration ofAgrobacterium T-DNA into a tobacco chromosome—possible involvement of DNA homology between T-DNA and plant DNA.Mol. Gen. Genet. 224, 309–16.

    Article  CAS  PubMed  Google Scholar 

  • Matzke, M.A., Primig, M., Trnovsky, J. and Matzke, A.J.M. (1989) Reversible methylation and inactivation of marker genes in sequentially transformed tobacco.EMBO J. 8, 643–9.

    CAS  PubMed  Google Scholar 

  • Mayerhofer, R., Konczkalman, Z., Nawrath, C., Bakkeren, G., Crameri, A., Angelis, K., Redei, G.P., Schell, J., Hohn, B. and Koncz, C. (1991) T-DNA integration—a mode of illegitimate recombination in plants.EMBO J. 10, 697–704.

    CAS  PubMed  Google Scholar 

  • Melchers, L.S. and Hooykaas, P.J.J. (1987) Virulence ofAgrobacterium.Oxford Surveys Pl. Mol. Cell Biol. 4, 167–220.

    CAS  Google Scholar 

  • Mittelsten Scheid, O., Paszkowski, J. and Potrykus, I. (1991) Reversible inactivation of a transgene inArabidopsis thaliana.Mol. Gen. Genet. 228, 104–12.

    Article  CAS  PubMed  Google Scholar 

  • Negrutiu, I., Shillito, R., Potrykus, I., Biasini, G. and Sala, F. (1987) Hybrid genes in the analysis of transformation conditions.Pl. Mol. Biol. 8, 363–73.

    Article  CAS  Google Scholar 

  • Odell, J.T., Nagy, F. and Chua, N.-H. (1987) Variability in 35S promoter expression between independent transformants. In Key, J. and McIntosh, L. eds,Plant Gene Systems and their Biology, pp. 289–99. New York: A.R.Liss.

    Google Scholar 

  • Offringa, R., de Groot, M.J.A., Haagsman, H.J., Does, M.P., van den Elzen, P.J.M. and Hooykaas, P.J.J. (1990) Extrachromosomal homologous recombination and gene targeting in plant cells afterAgrobacterium mediated transformation.EMBO J. 9, 3077–84.

    CAS  PubMed  Google Scholar 

  • Orr-Weaver, T.L., Szostak, J.W. and Rothstein, R.J. (1981) Yeast transformation: a model system for the study of recombination.Proc. Natl Acad. Sci. USA 78, 6354–8.

    Article  CAS  PubMed  Google Scholar 

  • Paszkowski, J., Baur, M., Boguchi, A. and Potrykus, I. (1988) Gene targeting in plants.EMBO J. 7, 4021–6.

    CAS  PubMed  Google Scholar 

  • Potrykus I., Paszkowski, J., Paul, M., Petruska, I. and Shillito, D. (1985) Molecular and general genetics of a hybrid foreign gene introduced into tobacco by direct gene transfer.Mol. Gen. Genet. 199, 169–77.

    Article  CAS  PubMed  Google Scholar 

  • Pruitt, R.E. and Meyerowitz, E.M. (1986) Characterization of the genome ofArabidopsis thaliana.J. Mol. Biol. 187, 169–83.

    Article  CAS  PubMed  Google Scholar 

  • Riele, H.T., Maandag, E.R., Clarke, A., Hooper, M. and Berns, A. (1990) Consecutive inactivation of both alleles of thepim-1 proto-oncogene by homologous recombination in embryonic stem cells.Nature 348, 649–51.

    Article  Google Scholar 

  • Rodenburg, K.W., de Groot, M.J.A., Schilperoort, R.A., Hooykaas, P.J.J. (1989) Single-stranded DNA used as an efficient new vehicle for transformation of plant protoplasts.Pl. Mol. Biol. 13, 711–9.

    Article  CAS  Google Scholar 

  • Rommerskirch, W., Graeber, I., Grässmann, M. and Grässman, A. (1988) Homologous recombination of SV40 DNA in COS7 cells occurs with high frequency in a gene dose independent fashion.Nucl. Acids Res. 16, 941–52.

    CAS  PubMed  Google Scholar 

  • Roth, D.B. and Wilson, J.H. (1988) Illegitimate recombination in mammalian cells. In Kucherlapati, R. and Smith, G.R. eds,Genetic recombination, pp. 621–53. Washington: American Society for Microbiology.

    Google Scholar 

  • Rothstein, R. (1991) Targeting, disruption, replacement, and allele rescue—integrative DNA transformation in yeast.Guide to yeast Genetics and Molecular Biology 194, 281–301.

    CAS  Google Scholar 

  • Sedivy, J.M. and Sharp, P.A. (1989) Positive genetic selection for gene disruption in mammalian cells by homologous recombination.Proc. Natl Acad. Sci. USA 86, 227–31.

    Article  CAS  PubMed  Google Scholar 

  • Sheerman, S. and Bevan, M.W. (1988) A rapid transformation method forSolanum tuberosum using binaryAgrobacterium tumefaciens vectors.Pl. Cell Rep. 7, 13–6.

    Article  Google Scholar 

  • Simon, J.R., Moore, P.D. (1987) Homologous recombination between single-stranded DNA and chromosomal genes inSaccharomyces cerevisiae.Mol. Cell Biol. 7, 2329–34.

    CAS  PubMed  Google Scholar 

  • Smith, G.R. (1988) Homologous recombination in procaryotes.Microbiol. Rev. 52, 1–28.

    CAS  PubMed  Google Scholar 

  • Smithies, O., Gregg, R.G., Boggs, S.S., Koralewski, M.A. and Kucherlapati, R.S. (1985) Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination.Nature 317, 230–4.

    Article  CAS  PubMed  Google Scholar 

  • Song, K.-Y., Schwartz, F., Maeda, N., Smithies, O. and Kucherlapati, R. (1987) Accurate modification of a chromosomal plasmid by homologous recombination in human cells.Proc. Natl Acad. Sci USA 84, 6820–4.

    Article  CAS  PubMed  Google Scholar 

  • Takoyama, K.M. and Inouye, M. (1990) Antisense RNA.Cri. Rev. Biochem. Mol. Biol. 25, 155–84.

    Google Scholar 

  • Thomas, K.R. and Capecchi, M.R. (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells.Cell 51, 503–12.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, K.R. and Capecchi, M.R. (1990) Targeted disruption of the murineint-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development.Nature 346, 847–50.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, K.R., Folger, K.R. and Capecchi, M.R. (1986) High frequency targeting of genes to specific sites in the mammalian genome.Cell 44, 419–28.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, S., Clarke, A.R., Pow, A.M., Hooper, M.L. and Melton, D.W. (1989) Germ line transmission and expression of a correctedhprt gene product by gene targeting in embryonic stem cells.Cell 56, 313–21.

    Article  CAS  PubMed  Google Scholar 

  • Valvekens, D., van Montagu, M. and van Lijsebettens, M. (1988)Agrobacterium tumefaciens-mediated transformation ofArabidopsis thaliana root explants by using kanamycin selection.Proc. Natl Acad. Sci. USA 85, 5536–40.

    Article  CAS  PubMed  Google Scholar 

  • Van der Krol, A.R., Mur, L.A., de Lange, P., Gerats, A.G.M., Mol, J.N.M. and Stuitje, A.R. (1990) Antisense chalcone synthase genes inPeturnia—visualization of variable transgene expression.Mol. Gen. Genet 220, 204–12.

    Article  Google Scholar 

  • Van Slogteren, G.M.S., Hooykaas, P.J.J. and Schilperoort, R.A. (1984) Silent T-DNA genes in plant lines transformed byAgrobacterium tumefaciens are activated by grafting and by 5-azacytidine treatment.Pl. Mol. Biol. 3, 333–6.

    Article  Google Scholar 

  • Wirtz, U., Schell, J. and Czernilofsky, A. (1987) Recombination of selectable marker DNA inNicotiana tabacum.DNA 6, 245–53.

    Article  CAS  PubMed  Google Scholar 

  • Yagi, T., Ikawa, Y., Yoshida, K., Shigetani, Y., Takeda, N., Mabuchi, I., Yamamoto, T. and Aizawa, S. (1990) Homologous recombination atc-fyn locus of mouse embryonic stem cells with use of diphtheria toxin A-fragment gene in negative selection.Proc. Natl Acad. Sci. USA 87, 9918–22.

    Article  CAS  PubMed  Google Scholar 

  • Zijlstra, M., Li, E., Sajjadi, F., Subramani, S. and Jaenisch, R. (1989) Germ-line transmission of a disrupted β2-microglobulin gene produced by homologous recombination in embryonic stem cells.Nature 342, 435–8.

    Article  CAS  PubMed  Google Scholar 

  • Zimmer, A. and Gruss, P. (1989) Production of chimaeric mice containing embryonic stem (ES) cells carrying a homeoboxHox 1.1 allele mutated by homologous recombination.Nature 338, 150–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Offringa, R., van den Elzen, P.J.M. & Hooykaas, P.J.J. Gene targeting in plants using theAgrobacterium vector system. Transgenic Research 1, 114–123 (1992). https://doi.org/10.1007/BF02528776

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02528776

Keywords

Navigation