Skip to main content
Log in

The use of combined FISH/GISH in conjuction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

We have used combined fluorescent and genomic in situ hybridization (FISH/GISH) together with 4′,6-diamidino-2-phenylindole (DAPI) counterstaining to determine simultaneously the chromosomal integration site and subgenomic allocation of a transgene insert in amphidiploid tobacco (Nicotiana tabacum, 2n=4x=48). The procedure provides sufficient information on physical markers to identify at least 20 out of 24 chromosome pairs of two tobacco cultivars commonly used in studies on transgene expression and silencing (cv. Petit Havana SR1 and cv. Gatersleben). The chromosomes can be distinguished on the basis of diploid parental ancestry, size, morphology, the presence of rDNA loci and/or intergenomic exchanges, and the DAPI banding pattern, which is shown here for the first time forN. tabacum. From a single ISH experiment, it should now be possible in most cases to identify a tobacco chromosome carrying a transgene insert, thus permitting systematic studies of how the chromosomal location of transgenes influences expression levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ambros PF, Matzke AJM, Matzke MA (1986a) Localization ofAgrobacterium rhizogenes T-DNA in plant chromosomes byin situ hybridization. EMBO J 5: 2073–2077

    PubMed  CAS  Google Scholar 

  • Ambros PF, Matzke MA, Matzke AJM (1986b) Detection of a 17 kb unique sequence (T-DNA) in plant chromosomes by in situ hybridization. Chromosoma 94: 11–18

    Article  CAS  Google Scholar 

  • Anamthawat-Jónsson K, Reader SM (1995) Pre-annealing of total genomic DNA probes for simultaneous genomic in situ hybridization. Genome 38: 814–816

    PubMed  Google Scholar 

  • Bennett MD (1995) The development and use of genomic in situ hybridization (GISH) as a new tool in plant biosystematics. In: Brandham PE, Bennett MD (eds) Kew Chromosome Conference IV. Royal Botanic Gardens, Kew, England, pp 167–183

    Google Scholar 

  • Finnegan J, McElroy D (1994) Transgene inactivation: plants fight back! Biotechnology 12: 883–888

    Article  Google Scholar 

  • Fransz PF, Stam M, Montijn B, Ten Hoopen R, Wiegant J, Kooter JM, Oud O, Nanninga N (1996) Detection of single-copy genes and chromosome rearrangements inPetunia hybrida by fluorescence in situ hybridization. Plant J 9: 767–774

    Article  CAS  Google Scholar 

  • Gill BS (1995) The molecular cytogenetic analysis of economically important traits in plants. In: Brandham PE, Bennett MD (eds) Kew Chromosome Conference IV. Royal Botanic Gardens, Kew, England, pp 47–53

    Google Scholar 

  • Jiang J, Gill BS (1994) Nonisotopic in situ hybridization and plant genome mapping: the first ten years. Genome 37: 717–725

    CAS  PubMed  Google Scholar 

  • Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of theNicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet 240:159–169

    Article  PubMed  CAS  Google Scholar 

  • Kenton A, Khashoggi A, Parokonny A, Bennett MD, Lichtenstein C (1995) Chromosomal location of endogenous geminivirus-related DNA sequences inNicotiana tabacum L. Chromosome Res 3: 346–350

    Article  PubMed  CAS  Google Scholar 

  • Kilby NJ, Leyser HM, Furner IJ (1992) Promoter methylation and progressive transgene inactivation inArabidopsis. Plant Mol Biol 20: 103–112

    Article  PubMed  CAS  Google Scholar 

  • Matzke AJM, Neuhuber F, Park Y-D, Ambros PF, Matzke MA (1994) Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol Gen Genet 244: 219–229

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Matzke AJM (1995) How and why do plants inactivate homologous (trans)genes? Plant Physiol 107: 679–685

    PubMed  CAS  Google Scholar 

  • Neuhuber F, Park Y-D, Matzke AJM, Matzke MA (1994) Susceptibility of transgene loci to homology-dependent gene silencing. Mol Gen Genet 244: 230–241

    Article  PubMed  CAS  Google Scholar 

  • Papp I, Iglesias VA, Moscone EA, Michalowski S, Spiker S, Park Y-D, Matzke MA, Matzke AJM (1996) Structural instability of a transgene locus in tobacco is associated with aneuploidy. Plant J 10: 469–478

    Article  PubMed  CAS  Google Scholar 

  • Park Y-D, Papp I, Moscone EA, Iglesias VA, Vaucheret H, Matzke AJM, Matzke MA (1996) Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J 9: 183–194

    Article  PubMed  CAS  Google Scholar 

  • Parokonny AS, Kenton AY (1995) Comparative physical mapping and evolution of theNicotiana tabacum L. karyotype. In: Brandham PE, Bennett MD (eds) Kew Chromosome Conference IV. Royal Botanic Gardens, Kew, England, pp 301–320

    Google Scholar 

  • Register JC, Peterson DJ, Bell PJ, Bullock WP, Evans IJ, Frame B, Greenland AJ, Higgs NS, Jepson I, Jiao S, Lewnau CJ, Sillick JM, Wilson HM (1994) Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol Biol 25: 951–961

    Article  PubMed  CAS  Google Scholar 

  • Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64: 315–324

    Google Scholar 

  • Strehl S, Ambros PF (1993) Fluorescence in situ hybridization with immunohistochemistry for highly sensitive detection of chromosome 1 aberrations in neuroblastoma. Cytogenet Cell Genet 63: 24–28

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H (1993) Identification of a general silencer for 19S and 35S promoters in a transgenic tobacco plant: 90 bp of homology in the promoter sequence are sufficient for trans-inactivation. C R Acad Sci Paris 316: 310–323

    Google Scholar 

  • Vaucheret H, Kronenberger J, Lepingle A, Vilaine F, Boutin J-P, Caboche M (1992) Inhibition of tobacco nitrite reductase activity by expression of antisense RNA. Plant J 2: 559–569

    PubMed  CAS  Google Scholar 

  • Wang J, Lewis ME, Whallon JH, Sink KC (1995) Chromosome mapping of T-DNA inserts in transgenePetunia by in situ hybridization. Transgenic Res 4: 241–246

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. M. Matzke.

Additional information

Edited by: D. Schweizer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moscone, E.A., Matzke, M.A. & Matzke, A.J.M. The use of combined FISH/GISH in conjuction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105, 321–326 (1996). https://doi.org/10.1007/BF02524650

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02524650

Keywords

Navigation