Skip to main content
Log in

Apoptotic induction by BE16627B on human malignant glioma cell lines by an anti-matrix metalloproteinase agent

  • Original Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

We have elucidated the pharmacological action of the anti-matrix metalloproteinase inhibitor BE16627B on glioma cells. The study was limited to the noncytotoxic dose range. The aim of the study was to investigate whether the cytotoxicity of BE16627B, an anti-MMP agent, is related to apoptosis in the human malignant glioma cell lines U87MG, U251MG, and U373MG. MTT assay was performed to detect the cytotoxic dose range. Agarose gel electrophoresis was performed with purified genomic DNA following exposure to 20 to 500 μM BE16627B for 24h, compared with 0 μM for the control group. Transmission electron microscopy (TEM) was employed to study nuclear fragmentation following exposure to 0, 20, and 500 μM of the agent for 24 h. An in situ endolabeling assay was performed to determine the index of apoptotic induction. MTT assay revealed that concentrations of 100 μM and above were cytotoxic. DNA laddering was demonstrated in agarose gel electrophoresis. TEM disclosed condensing and fragmentation of the chromatin. None of these changes were observed in the control group and the noncytotoxic dose group. The in situ endolabeling study disclosed that the apoptotic index was significantly elevated by cytotoxic doses of this agent (U373MG; control, 4.0%; 500 μM, 68.5%). These results indicated that cytotoxic concentrations of BE16627B induced apoptosis in human malignant glioma cell lines. In our previous report, this agent inhibited activity of MMP in noncytotoxic concentrations. Further study should be done to determine the pharmacological action of toxic BE16627B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cavenee WK, Furnari FB, Nagane M, et al (2000) Diffusely infiltrating astrocytomas. In: Kleihues P, Cayenee WK (eds) Pathology and genetics of the nervous system, IARC Press, Lyon, France, pp 10–21

    Google Scholar 

  2. Del Maestro R, Vaithlingham I, MacDonald W (1995) Degeneration of collagen type IV by C6 astrocytoma cells. J Neurooncol 24:75–81

    Article  PubMed  Google Scholar 

  3. Abe T, Mori T, Kohno K, et al (1994) Expression of 72 kDa type IV collagenase and invasion activity of human glioma cells. Clin Exp Metastasis 12:296–304

    Article  PubMed  CAS  Google Scholar 

  4. Nakagawa T, Kubota T, Kabuto M, et al (1994) Production of matrix metalloproteinases and tissue inhibitor of metalloproteinases-1 by human brain tumors. J Neurosurg 81:69–77

    PubMed  CAS  Google Scholar 

  5. Nakano A, Tani E, Miyazaki K, et al (1995) Matrix metalloproteinases and tissue inhibitor of metalloproteinases in human gliomas. J Neurosurg 83:298–307

    PubMed  CAS  Google Scholar 

  6. Rao J, Stack PA, Mohanan S, et al (1993) Elevated level of Mr 92 000 type IV collagenase in human brain tumors. Cancer Res 53:2208–2211

    PubMed  CAS  Google Scholar 

  7. Yoshida D, Noha M, Watanabe K, et al (2001) Novel approach to analysis of in vitro tumor angiogenesis with a variable-pressure scanning electron microscope: suppression by matrix metalloproteinase inhibitor SI-27. Brain Tumor Pathol 18:89–100

    Article  PubMed  CAS  Google Scholar 

  8. Watanabe K, Yoshida D, Noha M, et al (2001) Suppression of matrix metalloproteinase-2 and-9 mediated cell invasiveness by a novel matrix metalloproteinase inhibitor, BE16627B on human glioma cell lines; in vitro study. J Neurooncol 52:1–9

    Article  PubMed  CAS  Google Scholar 

  9. Wild-Bode C, Weller M, Wick W (2001) Molecular determinants of glioma cell migration and invasion. J Neurosurg 94:978–984

    Article  PubMed  CAS  Google Scholar 

  10. Shalinsky DR, Brekken J, Zou H, et al (1999) Broad antitumor and angiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. Ann NY Acad Sci 30:236–270

    Article  Google Scholar 

  11. Bernstein J, Laws E, Levine K, et al (1991) C6 glioma-astrocytoma cell and fetal astrocyte migration into artificial basement membrane: a permissive substrate for neural tumors but not fetal astrocytes. Neurosurgery 28:652–658

    Article  PubMed  CAS  Google Scholar 

  12. Pedersen P, Ness G, Engebraaten O, et al (1994) Heterogenous response to the growth factors [EGF, PDGF (bb), TGF-alpha, bFGF, IL-2] on glioma spheroid growth, migration and invasion. Int J Cancer 56:225–261

    Google Scholar 

  13. Heylen N, Vincent LM, Devos V, et al (2002) Fibroblasts capture cathepsin D secreted by breast cancer cells: possible role in the regulation of the invasive process. Int J Oncol 20:761–767

    PubMed  CAS  Google Scholar 

  14. Liotta L, Steeg P, Steler-Stevenson W (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64:327–336

    Article  PubMed  CAS  Google Scholar 

  15. Daiz VM, Planaguma J, Thomson TM, et al (2002) Tissue plasminogen activator is required for the growth, invasion, and angiogenesis of pancreatic tumor cells. Gastroenterology 122:806–819

    Google Scholar 

  16. Del Rosso M, Fibbi G, Pucci M, et al (2002) Multiple pathways of cell invasion are regulated by multiple families of serine proteinases. Clin Exp Metastasis 19:193–207

    Article  PubMed  Google Scholar 

  17. Kashida H, Kawamata H, Ichikawa K, et al (2001) Intracytoplasmic localization of cathepsin D reflects the invasive potential of gastric carcinoma. J Gastroenterol 36:809–815

    Article  PubMed  CAS  Google Scholar 

  18. Murray GI (2001) Matrix metalloproteinase: a multifunctional group of molecules. J Pathol 195:135–137

    Article  PubMed  CAS  Google Scholar 

  19. Yamamoto M, Mohanam S, Sawaya R, et al (1996) Differential expression of membrane-type matrix metalloproteinase and its correlation with gelatinase activation in human malignant brain tumors in vivo and in vitro. Cancer Res 56:384–392

    PubMed  CAS  Google Scholar 

  20. Hornebeck W, Emonard H, Monboisse JC, et al (2002) Matrix-directed regulation of pericellular proteolysis and tumor progression. Semin Cancer Biol 12:231–241

    Article  PubMed  CAS  Google Scholar 

  21. Fillmore HL, VanMeter TE, Broaddus WC (2001) Membrane-type matrix metalloproteinase (MT-MMPs): expression and function during glioma invasion. J Neurooncol 53:187–202

    Article  PubMed  CAS  Google Scholar 

  22. Yana I, Seiki M (2002) MT-MMPs play pivotal roles in cancer dissemination. Clin Exp Metastasis 19:209–215

    Article  PubMed  CAS  Google Scholar 

  23. Nagase H (1997) Activation mechanisms of matrix metalloproteinases. Biol Chem 378:151–160

    PubMed  CAS  Google Scholar 

  24. Apodaca G, Ruthka J, Bouhana K, et al (1990) Expression of metalloproteinases and metalloproteinase inhibitors by fetal astrocytes and glioma cells. Cancer Res 50:2322–2329

    PubMed  CAS  Google Scholar 

  25. Tonn J, Kerkau S, Bouterfa H, et al (1999) Effect of synthetic matrix metalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Int J Cancer 80: 764–772

    Article  PubMed  CAS  Google Scholar 

  26. Naito K, Kambayashi N, Nakajima S, et al (1994) Inhibition of growth of human tumor cells in nude mice by a metalloproteinase inhibitor. Int J Cancer 58:730–735

    PubMed  CAS  Google Scholar 

  27. Burke F, East N, Upton C, et al (1997) Interferon gamma induces cell cycle arrest and apoptosis in a model of ovarian cancer: enhancement of effect by batimastat. Eur J Cancer 33:1114–1121

    Article  PubMed  CAS  Google Scholar 

  28. Amundson SA, Myers TG, Fornace AJ Jr (1998) Roles of p53 in growth arrest and apoptosis: putting on the brakes after genotoxic stress. Oncogene 17:3287–3299

    Article  PubMed  Google Scholar 

  29. Daniel C, Duffield J, Brunner T, et al (2001) Matrix metalloproteinase inhibitors cause cell cycle arrest and apoptosis in glomerular mesangial cells. J Pharmacol Exp Ther 297:57–68

    PubMed  CAS  Google Scholar 

  30. Mitsiades N, Poulaki V, Leone A, et al (1999) Fas-mediated apoptosis in Ewing’s sarcoma cell lines by metalloproteinase inhibitors. J Nat Cancer Inst 91:1678–1684

    Article  PubMed  CAS  Google Scholar 

  31. Nakamura Y, Sato K, Wakimoto N, et al (2001) A new matrix metalloproteinase inhibitor SI-27 induces apoptosis in several human myeloid leukemia cell lines and enhances sensitivity to TNF alpha-induced apoptosis. Leukemia 15:1217–1224

    Article  PubMed  CAS  Google Scholar 

  32. Noha M, Yoshida D, Watanabe K, et al (2000) Suppression of cell invasion on human malignant glioma cell lines by a novel matrix-metalloproteinase inhibitor SI-27: in vitro study. J Neurooncol 48:217–223

    Article  PubMed  CAS  Google Scholar 

  33. Yoshida D, Noha M, Watanabe K, et al (2002) SI-27, a novel inhibitor of matrix metalloproteinases with antiangiogenic activity: detection with a variable-pressure scanning electron microscope. Neurosurgery 50:578–586

    Article  PubMed  Google Scholar 

  34. Laura A, Rudolph O, Lynn MM (1998) Matrix metalloproteinases in remodeling of the normal and neoplastic mammary gland. J Mammary Gland Biol Neoplasia 3:177–189

    Article  Google Scholar 

  35. Riley SC, Webb CJ, Leask R, et al (2000) Involvement of matrix metalloproteinases 2 and 9, tissue inhibitor of metalloproteinases and apoptosis in tissue remodelling in the sheep placenta. J Repord Fertil 118:19–27

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, D., Watanabe, K., Takahashi, H. et al. Apoptotic induction by BE16627B on human malignant glioma cell lines by an anti-matrix metalloproteinase agent. Brain Tumor Pathol 20, 13–19 (2003). https://doi.org/10.1007/BF02478942

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02478942

Key words

Navigation