Skip to main content
Log in

Measurement of the fracture energy using three-point bend tests: Part 3—influence of cutting theP-δ tail

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Available measures of the fracture energyG F obtained with the procedure proposed by RILEM TC-50 provide values that appear to change with sample size, calling into question the possibility of consideringG F as a material parameter. In previous papers several sources of energy dissipation were analysed and it was concluded that, although important, they were not enough to account for the measured size effect. Here, the dissipated energy at the very end of the test is analysed. It is shown that this energy cannot be neglected for small specimens if the tests are interrupted at a reasonably low rotation. When this energy is taken into account, the final values ofG F appear to be almost size-independent. This result supportsG F as a material parameter and provides further confidence in the RILEM proposal. Moreover, it furnishes a physical explanation for the perturbed ligament model previously developed by the authors.

Resume

Les mesures de l'énergie de ruptureG F obtenues selon la méthode préconisée par la Commission Technique 50, dont on dispose, fournissent des valeurs qui se trouvent changer avec la taille de l'éprouvette, ce qui met en question la possibilité de considérer GF comme un paramètre du matériau. Dans les articles précédents, on a examiné plusieurs sources de dissipation de l'énergie, et on a conclu que, tout en ayant de l'importance, elles ne suffisent pas à explique l'effet d'échelle mesuré.

Une solution semble résider dans le fait que, en flexion, l'essai ne peut être contrôlé jusqu'á rupture complète de l'éprouvette. Il doit être stoppé quelque part avant ce point, et la quantité d'énergie qui correspond au segment non enregistré de la courbeP-δ n'est pas prise en compte dans les mesures. Quand cette énergie est prise en compte, dans les résultats expérimentaux des auteurs, les valeurs, finales deG F semblent presque indépendantes de l'échelle. Ce résultat permet de considérerG F comme un paramètre du matériau à des fins de calcul, et constitue un encouragement pour la modélisation du béton en tant que matériau cohérent.

L'énergie comprise dans le segmentP-δ justifie une explication physique du concept phénoménologique dit ‘Perturbed Ligament Model’ que les auteurs ont précédemment élaboré.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hillerborg, A., ‘The theoretical basis of a method to determine the fracture energyG F of concrete’,Mater. Struct. 18(106) (1985) 291–296.

    Article  Google Scholar 

  2. RILEM TC-50 FMC (Draft Recommendation), ‘Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams’, ibid.Mater. Struct. 18(106) (1985) 285–290.

    Google Scholar 

  3. Elices, M. and Planas, J., ‘Material models,’, in ‘Fracture Mechanics of Concrete Structrues’ (Chapman & Hall, London, 1989) pp. 16–66.

    Google Scholar 

  4. Idem., ‘Size effect and experimental validation of available fracture models’, in ‘Analysis of Concrete Structures by Fracture Mechanics’ (Chapman & Hall, London, 1990, pp. 99–127).

    Google Scholar 

  5. Hillerborg, A., ‘Results of three comparative test series for determining the fracture energyG F of concrete’,Mater. Struct. 18(107) (1985) 407–413.

    Article  Google Scholar 

  6. Wittmann, F. H. (Ed.), ‘Fracture Toughness and Fracture Energy of Concrete’ (Elsevier, Amsterdam, 1986).

    Google Scholar 

  7. Mihashi, H., Takahashi, H. and Wittman, F. H. (Eds.), ‘Fracture Toughness and Fracture Energy: Test Methods for Concrete and Rock’ (Balkema, Rotterdam, 1989.

    Google Scholar 

  8. Guinea, G. V., Planas, J. and Elices, M., ‘Measurement of the fracture energy using three-point bend tests: 1-Influence of experimental procedures’Mater. Struct. 25(148) (1992) 212–218.

    Google Scholar 

  9. Planas, J., Elices, M. and Guinea, G. V., ‘Measurement of the fracture energy using three-point bend tests: 2-Influence of bulk energy dissipation’,25(149) (1992) 305–312.

    Article  Google Scholar 

  10. Planas, J. and Elices, M., ‘Conceptual and experimental problems in the determination of the fracture energy of concrete’, in ‘Fracture Toughness and Fracture Energy: Test Methods for Concrete and Rock (Balkema, Rotterdam, 1989) pp. 165–181.

    Google Scholar 

  11. Planas, J., Maturana, P., Guinea, G. V. and Elices, M., ‘Fracture energy of water saturated and partially dry concrete at room and at cryogenic temperatures’ in ‘Advances in Fracture Research’ (Pergamon, Oxford, 1989), pp. 1809–1817.

    Google Scholar 

  12. Maturana, P., Planas, J. and Elices, M., ‘Evolution of fracture behaviour of saturated concrete in the low temperature range’,Engng Fract. Mech. 35 (1990) 827–834.

    Article  Google Scholar 

  13. Petersson, P. E., ‘Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials’, Lund Institute of Technology Report TVBM-1006 (1981).

  14. Planas, J. and Elices, M., ‘The influence of specimen size and material characteristic size on the applicability of effective crack models’, in ‘Fracture Processes in Concrete, Rock and Ceramics’ (Chapman & Hall, London, 1991, pp. 375–385.

    Google Scholar 

  15. Dutron, P., ‘Mise au point d'une composition de béton de référence pour recherches et essais en laboratoire’,Mater. Struct. 7(39) (1974) 207–224.

    Google Scholar 

  16. Reinhardt, H. W., Cornelissen, H. A. W., and Hordijk, D. A., ‘Tensile tests and failure analysis of concrete.J. Struct. Engng ASCE 112(11) (1986) 2462–2477.

    Article  Google Scholar 

  17. Rokugo, K., Iwasa, M., Suzuki, T., and Koyanagi, W., ‘Testing methods to determine tensile strain softening curve and fracture energy of concrete’, in ‘Francture Toughness and Fracture Energy’ (Balkema, Rotterdam, 1989) pp. 153–163.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elices, M., Guinea, G.V. & Planas, J. Measurement of the fracture energy using three-point bend tests: Part 3—influence of cutting theP-δ tail. Materials and Structures 25, 327–334 (1992). https://doi.org/10.1007/BF02472591

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02472591

Keywords

Navigation