Skip to main content
Log in

Phototransduction in cones: An inverse problem in enzyme kinetics

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Phototransduction is a process which links the absorption of photons by a rod or cone to the modulation of voltage across the cell membrane. An important feature of many vertebrate photoreceptors is a mechanism that adjusts the sensitivity and dynamics of the response to light according to the level of illumination.

We construct a system of ordinary differential equations that models what are currently thought to be the important molecule mechanisms involved in phototransduction: this includes consideration of both intracellular enzyme kinetics and the properties of light-insensitive and light-sensitive conductances in the cone membrane. The system contains negative feedback whose functional form is determined by constraining the steady-state behaviour of the system. Despite the highly nonlinear nature of the system of ordinary differential equations, our methods permit us to derive an analytic expression for the first-order frequency response parametric in the steady-state value of only one dynamic variable, the light input. Various unknown kinetic parameters are found by fitting the model to experimental data on the first-order frequency response of cones measured at several mean light levels spanning a range of four log units. Good fits are obtained to the data, and the computed shape of the feedback function agrees qualitatively with recent experiment. Moreover, the model accounts for the dramatic speeding up of the response kinetics and the decrease in response gain with increasing light level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature

  • Altman, J. 1985. “New Visions in Photoreception.”Nature 313, 264–265.

    Article  Google Scholar 

  • Attwell, D. 1985. “Phototransduction Changes Focus.”Nature 317, 14–15.

    Article  Google Scholar 

  • —, F. S. Werblin and M. Wilson. 1982. “The Properties of Single Cones Isolated from the Tiger Salamander Retina.”J. Physiol. 328, 259–283.

    Google Scholar 

  • Baylor, D. A. and M. G. F. Fuortes. 1970. “Electrical Responses of Single Cones in the Retina of the Turtle.”J. Physiol. 207, 77–92.

    Google Scholar 

  • — and A. L. Hodgkin. 1974. “Changes in Time-Scale and Sensitivity in Turtle Photoreceptors.”J. Physiol. 242, 729–758.

    Google Scholar 

  • —,— and T. D. Lamb. 1974a. “The Electrical Response of Turtle Cones to Flashes and Steps of Light.”J. Physiol. 242, 685–727.

    Google Scholar 

  • —,— and —. 1974b. “Reconstruction of the Electrical Responses of Turtle Cones to Flashes and Steps of Light.”J. Physiol. 242, 759–791.

    Google Scholar 

  • Cobbs, W. H., A. E. Barkdoll III and E. N. Pugh Jr. 1985. “Cyclic GMP Increases Photocurrent and Light Sensitivity of Retinal Cones.”Nature 317, 64–66.

    Article  Google Scholar 

  • — and E. N. Pugh Jr. 1987. “Kinetics and Components of the Flash Photocurrent of Isolated Retinal Rods of the Larval Salamander,Ambystoma Tigrinum.”J. Physiol. 394, 529–572.

    Google Scholar 

  • Cote, R. H., M. S. Biernbaum, G. D. Nicol and M. D. Bownds. 1984. “Light-Induced Decreases in cGMP Concentration Precede Changes in Membrane Permeability in Frog Rod Photoreceptors”,J. Biol. Chem. 259, 9635–9641.

    Google Scholar 

  • Daly, S. J. and R. I. Normann. 1985. “Temporal Information Processing in Cones: Effects of Light Adaptation on Temporal Summation and Modulation.”Vision Res. 25, 1197–1206.

    Article  Google Scholar 

  • Dawis, S. M., R. M. Graeff, R. A. Heyman, T. F. Walseth and N. B. Goldberg. 1988. “Regulation of Cyclic GMP Metabolism in Toad Photoreceptors.”J. biol. Chem. 263, 8771–8785.

    Google Scholar 

  • DeVries, G. W., A. I. Cohen, O. Lowry and J. A. Ferendelli. 1979. “Cyclic Nucleotide in the Cone-Dominant Ground-Squirrel Retina.”Expl Eye Res. 29, 315–321.

    Article  Google Scholar 

  • Haynes, L. and K.-W. Yau. 1985. “Cyclic GMP-Sensitive Conductance in Outer Segment of Catfish Cones.”Nature 317, 61–64.

    Article  Google Scholar 

  • Heineken, F. G., H. M. Tsuchiya and R. Aris. 1967. “On the Mathematical Status of the Pseudo Steady-State Hypothesis of Biochemical Kinetics.”Math. Biosci. 1, 95–113.

    Article  Google Scholar 

  • Hodgkin, A. L., P. A. McNaughton and B. J. Nunn. 1987. “Measurement of Sodium-Calcium Exchange in Salamander Rods.”J. Physiol. 391, 347–370.

    Google Scholar 

  • Jack, J. J. B., D. Noble and R. W. Tsien. 1975.Electric Current Flow in Excitable Cells. Oxford University Press.

  • Koch, K.-W. and L. Stryer. 1988. “Highly Cooperative Feedback Control of Retinal Rod Guanylate Cyclase by Calcium Ions.”Nature 334, 64–66.

    Article  Google Scholar 

  • Lamb, T. D. 1986. “Transduction in Vertebrate Photoreceptors: the Roles of Cyclic GMP and Calcium.”Trends Neurosci. 9, 224–228.

    Article  Google Scholar 

  • Matthews, H. R., R. L. W. Murphy, G. L. Fain and T. D. Lamb. 1988. “Photoreceptor Light Adaptation is mediated by cytoplasmic Calcium Concentration.”Nature 334, 67–69.

    Article  Google Scholar 

  • Naka, K.-I., M.-O. Itoh and R. L. Chappell. 1987. “Dynamics of Turtle Cones.”J. Gen. Physiol. 89, 321–337.

    Article  Google Scholar 

  • Nakatani, K. and K.-W. Yau. 1988. “Calcium and Light Adaptation in Retinal Rods and Cones.”Nature 334, 69–71.

    Article  Google Scholar 

  • Normann, R. A. and I. Perlman. 1979. “The Effects of Background Illumination on the Photoresponses of Red and Green Cones.”J. Physiol. 286, 491–507.

    Google Scholar 

  • Pugh, E. and J. Altman. 1988. “A Role for Calcium in Adaptation.”Nature 334, 16–17.

    Article  Google Scholar 

  • Pugh Jr, E. N. and W. H. Cobbs. 1986. “Visual Transduction in Vertebrate Rods and Cones: a Tale of Two Transmitters, Calcium and Cyclic GMP.”Vision Res. 26, 1613–1643.

    Article  Google Scholar 

  • Schnapf, J. L. and R. N. McBurney. 1980. “Light-Induced Changes in Membrane Current in Cone Outer Segments of Tiger Salamander and Turtle.”Nature 287, 239–241.

    Article  Google Scholar 

  • Schwartz, E. A. 1985. “Phototransduction in Vertebrate Rods.”Ann. Rev. Neurosci. 8, 339–367.

    Article  Google Scholar 

  • Shapley, R. M. and C. Enroth-Cugell. 1984. “Visual Adaptation and Retinal Gain Controls.” InProgress in Retinal Research, N. Osborne and G. Chader (eds), pp. 263–346. Oxford: Pergamon Press.

    Google Scholar 

  • Stryer, L. 1986. “Cyclic GMP Cascade of Vision.”Ann Rev. Neurosci. 9, 87–119.

    Article  Google Scholar 

  • Tranchina, D., J. Gordon and R. Shapley. 1984. “Retinal Light Adaptation—Evidence for a Feedback Mechanism.”Nature 310, 314–316.

    Google Scholar 

  • — and C. S. Peskin. 1988. “Light Adaptation in the Turtle Retina: Embedding a Parametric Family of Linear Models in a Single Non-Linear Model.”Visual Neurosci. 1, 339–348.

    Article  Google Scholar 

  • Yau, K.-W. and K. Nakatani. 1984. “Electrogenic Na−Ca Exchange in Retinal Rod Outer Segment.”Nature 311, 661–663.

    Article  Google Scholar 

  • — and —. 1985. “Light-Induced Reduction of Cytoplasmic Free Calcium in Retinal Rod Outer Segment.”Nature 313, 579–582.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sneyd, J., Tranchina, D. Phototransduction in cones: An inverse problem in enzyme kinetics. Bltn Mathcal Biology 51, 749–784 (1989). https://doi.org/10.1007/BF02459659

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459659

Keywords

Navigation