Skip to main content
Log in

Faradic resistance of the electrode/electrolyte interface

  • Transducers and Electrodes
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A new method is used to measure the direct-current (Faradic) resistance of a single electrode/electrolyte interface. The method employs a constant-current pulse and a potential-sensing electrode. By choosing a sufficiently long pulse duration, the voltage between the test and potential-sensing electrode exhibits a three-phase response. In the steady-state phase, the voltage measured is equal to the current flowing through the electrode Faradic resistance and the resistance of the electrolyte between the test and potential-sensing electrode. By measuring this latter resistance with a high-frequency sinusoidal alternating current, the voltage drop in the electrolyte is calculated and subtracted from the voltage measured between the test and potential-sensing electrode, thereby allowing calculation of the Faradic resistance. By plotting the reciprocal of the Faradic resistance against current density and fitting the data points to a third-order polynomial, it is possible to determine the zero-current density (Faradic) resistance. This technique was used to determine the Faradic resistance of electrodes (0·1 cm2) of stainless-steel, platinum, platinum-iridium and rhodium in 0·9 per cent NaCl at 25°C. The zero current Faradic resistance is lowest for platinum (30·3 kΩ), slightly higher for platinum-iridium (47·6kΩ), much higher for rhodium (111 kΩ) and highest for type 316 stainless-steel (345 kΩ). In all cases, the Faradic resistance decreases dramatically with increasing current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Block, M. T. (1968) The electrical and biological properties of tungsten microelectrodes.Med. & Biol. & Eng.,6, 517–525.

    Google Scholar 

  • De Boer, R. W. andvan Oosterom, A. (1978) Electrical properties of platinum electrodes: impedance measurements and time-domain analysis.Med. & Biol. Eng. & Comput.,16, 1–10.

    Google Scholar 

  • Faraday, M. (1834) Experimental researches in electricity.Phil. Trans. R. Soc. London,124, 77–122.

    Google Scholar 

  • Geddes, L. A., Baker, L. E. andMoore, A. G. (1969) Optimum electrolytic chloriding of silver electrodes.Med. & Biol. Eng.,7, 49–56.

    Google Scholar 

  • Geddes, L. A., Da Costa, C. P. andWise, G. (1971) The impedance of stainless-steel electrodes. —Ibid.,9, 511–521.

    Google Scholar 

  • Geddes, L. A. (1975) Characteristics of defibrillating electrodes and living tissue. Proc. Cardioc Defib. Conf., Purdue University, West Lafayette, Indiania, USA, 1st–3rd Oct., 49–53.

  • Grahame, D. C. (1952) Mathematical theory of the Faradic admittance.J. Electrochem. Soc.,99, (12) 370C-385C.

    Google Scholar 

  • Greatbatch, W. (1967) Electrochemical polarization of physiological electrodes.Med. Res. Eng.,6, (2), 13–17.

    Google Scholar 

  • Creatbatch, W. andChardack, W. M. (1968) Myocardial and endocardial electrodes for chronic implantation.Ann. NY Acad. Sci.,148, 234–251.

    Google Scholar 

  • Greatbach, W., Peirsma, B., Shannon, F. D. andCalhoon, S. W. (1969) Polarization phenomena relating to physiological electrodes. —Ibid.,149, 722–744.

    Google Scholar 

  • Jaron, D., Briller, S. A., Schwan, H. P. andGeselowitz, D. B. (1969) Nonlinearity of cardiac pacemaker electrodes.IEEE Trans. BME-16, 132–138.

    Google Scholar 

  • Mansfield, P. B. (1967) Myocardial stimulation.Am. J. Physiol.,212, 1475–1488.

    Google Scholar 

  • Murdock, C. G. andZimmerman, E. T. (1936) Polarization impedance at low frequencies.Physics,7, 211–219.

    Article  Google Scholar 

  • Onaral, B. andSchwan, H. P. (1982) Linear and nonlinear properties of platinum electrode polarisation. Part 1. Frequency dependence at very low frequencies.Med. & Biol. Eng. & Comput.,20, 299–306.

    Article  Google Scholar 

  • Ragheb, T. andGeddes, L. A. (1990) The electrical properties of metallic electrodes. —Ibid.,28, 182–186.

    Article  Google Scholar 

  • Schwan, H. P. andMaczuk, J. G. (1965) Electrode polarization impedance: limits of linearity. Proc. 18th Ann. Conf. Eng. in Med. & Biol., Paper 5.1, 24.

  • Schwan, H. P. (1968) Electrode polarization impedance and measurements in biological materials.Ann. NY Acad. Sci.,148, 191–209.

    Google Scholar 

  • Varley, C. F. (1871) Polarization of metallic surfaces in aqueous solutions.Phil. Trans. R. Soc. London,161, 129–136.

    Google Scholar 

  • Volta, A. (1793) Account of some discoveries made by Mr Galvani of Bologna with experiments and observations on them. In two letters from Mr Alexander Volta, FRS, Professor of Natural Philosophy in the University of Pavia, to Mr Tiberius Cavallo, FRS,Phil. Trans. R. Soc. London,83, 285–291.

    Google Scholar 

  • Volta, A. (1800) On the electricity excited by the mere contact of conducting substances of different kinds. In a letter from Mr Alexander Volta, FRS, Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. KBFRS, —Ibid.,90, 744–746.

    Google Scholar 

  • Warburg, E. (1899) Über das Verhalten sorgenannter unpolarisbarer Electroden gegen Wechselstrom.Ann. Phys. Chem. 67, 493–499.

    MATH  Google Scholar 

  • Warburg, E. (1901) Über die Polarisationscapacitat des Platins.Ann. Phys.,6, 125–135.

    MATH  Google Scholar 

  • Weinman, J. andMahler, J. (1964) An analysis of electrical properties of metal electrodes.Med. & Biol. Eng.,2, 299–310.

    Google Scholar 

  • Wien, M. (1896) Über die Polarization bei Wechselstrom. —Ibid.,58, 37–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, S., Geddes, L.A., Bourland, J.D. et al. Faradic resistance of the electrode/electrolyte interface. Med. Biol. Eng. Comput. 30, 538–542 (1992). https://doi.org/10.1007/BF02457834

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02457834

Keywords

Navigation