Skip to main content
Log in

Electronic fluctuation, the nature of interactions and the structure of liquid metals

  • Published:
Il Nuovo Cimento D

Summary

Interactions controlling ionic motion and structure in liquid metals can be systematically developed beginning with the ultimate view of such systems as neutral assemblies of nuclei and electrons, and proceeding to standard reduced Hamiltonians reflecting assemblies ofions and electrons. The assumption of electronically rigid ion leads via response methods and pseudopotentials to statically screened ion-ion potentials and beyond. Fluctuations are introduced into this otherwise common viewpoint by relaxing the assumption of electronically rigid ion cores and also by treating electronic response beyond linear order. It is argued that both effects can lead to more attractive pair interactions and possibly to effects much larger than, for example, Friedel oscillations. These contributions are state (i.e. density) dependent and their presence might be expected on the basis of clustering behavior seen for some systems in theirvapour phases. This leads to two limiting viewpoints on the liquid-state structure of such systems, the first as an entirely monoatomic phase but with a pair interaction that is unusual, the second as a system supporting transient clusters whose presence reflects the complexities argued on the basis of a more extended treatment of the electron problem.

Riassunto

Le interazioni che controllano il movimento ionico e la struttura nei metalli liquidi possono essere sviluppate in maniera sistematica, iniziado con l'ultima visione di tali sistemi come agglomerati neutri di nuclei ed elettroni e procedendo con hamiltoniane standard ridotte che riflettono agglomerati diioni ed elettroni. L'assunto di ioni elettronicamente rigidi porta mediante metodi di risposta e pseudopotenziali a potenziali ione-ione schermati staticamente ed oltre. Le fluttuazioni sono introdotte in questa altrimenti commune visione, eliminando l'assunto di noccioli ionici elettronicamente rigidi ed anche trattando il risultato elettronico al di là del primo ordine. Si arguisce che entrambi gli effetti possono portare ad interazioni a coppie più attrattive e possibilmente ad effetti piú grandi che, per esempil, le oscillazioni di Friedel. Questi contributi dipendono dallo stato (cioè densità) e la loro presenza potrebbe essere prevista sulla base di un comportamento a cluster visto per alcuni sistemi nella loro fase di vapore. Ciò porta a due visioni limite della struttura di stato liquido di tali sistemi, la prima come una fase interamente monoatomic ma con un'interazione a coppie che è inusuale, la seconda come un sistema che comprende clusters transitori la cui presenza riflette le complessità intuite sulla base di una trattazione più esteasa del problema dell'elettrone.

Резюме

Систематически исследуются взаимодействия, определяющие движение ионов и структуру в Зидких металлах, начиная с подхода к таким системам, как нейтральным ансамблям ядер и электроноб, и переходя к стандартным Гамильтонианам, отражающим ансамбли ионов и электронов Предположение об электронно-жестких ионах приводит, посредством методов отклика и псевдопотенциалов, к статически экранированным ион-ионным потенциалам. Вводятся фуктуации в стандартный подход, используя предположение об электронножестких ионах, а также учитывая электронный отклик вяше линейного порядка. Доказывается, что эти оба эффекта могут приводить к парным потенциалам притяжения и возможно к более сильным эффектам, чем, например, осцилляции фриделя. Эти вклады зависят от состояния (т.е. плотности) и их наличие можно ожидать на основе класрного поведения, обнаруженного для некоторых систем в их паровых фазах. Таким образом, возникают две предельные точки зрения на структуру жидкого состояния таких систем, первая-полностью одноатомная фаза с парным взаимодействием, что является необычным, вторая-система переходных кластеров, чье наличие отражает сложности, доказываемые на основе более обобщеннтго рассмотрения электронной проблемы.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Footnotes

  1. In the case of relatively low-Z A elements with few electrons per nucleus it is now possible to apply many-body quantum Monte carlo simulation techniques to (1). See.G. Sugiyama, G. Serah andB. J. Alder:Physica A,156, 144 (1989), for the case of lithium.

    Article  ADS  Google Scholar 

  2. For a more detailed discussion of the quantum-statistical issues, seeN. W. Ashcroft:The Liquid State of Matter: Fluids Simple and Complex, edited byE. W. Montroll andJ. L. Lebowitz (North Holland, Amsterdam, 1982).

    Google Scholar 

  3. J. Cheung andN. W. Ashcroft:Phys. Rev. B,23, 2484 (1981), see also ref. [2] For a more detailed discussion of the quantum-statistical issues, seeN. W. Ashcroft:The Liquid State of Matter: Fluids Simple and Complex, edited byE. W. Montroll andJ. L. Lebowitz (North Holland, Amsterdam, 1982).

    Article  ADS  Google Scholar 

  4. H. Hellman:Acta Physicochem. USSR,1, 913 (1935);E. Antoncik:J. Phys. Chem. Solids,10, 314 (1959);J. C. Phillips andL. Kleinman:Phys. Rev.,116, 287 (1959).

    Google Scholar 

  5. For a comprehensive review, seeJ. Hafner:From Hamiltonians to Phase Diagrams (Springer, Berlin, 1987).

    Google Scholar 

  6. N. W. Ashcroft andD. C. Langreth:Phys. Rev.,155, 682 (1967).

    Article  ADS  Google Scholar 

  7. M. H. Cohen:Metalic Solid Solutions, edited byJ. Friedel andA. Guinier (Benjamin, New York, N. Y., 1962), p. IX-1.

    Google Scholar 

  8. V. Heine:Solid State Phys.,24, 1 (1971).

    Article  Google Scholar 

  9. E. G. Brovman andYu. Kagan:Sov. Phys. JETP,30, 721 (1970);J. Hammerberg andN. W. Ashcroft:Phys. Rev. B,2, 409 (1974).

    ADS  Google Scholar 

  10. For analysis of the consequences of both short-range and long-range behaviour in pair potentials possessing Friedel oscillations of the form (18) seeJ. Hafner andV. Heine:J. Phys. F,13, 2479 (1983);16, 1429 (1986).

    Article  ADS  Google Scholar 

  11. W. A. Harrison:Pseudopotentials in the Theory of Metals, see alsoPhys. Rev. B,7, 2403 (1973). See alsoP. L. Taylor:Phys. Rev.,131, 1995 (1963).

    MathSciNet  ADS  Google Scholar 

  12. The point is that, if Δ/ℏ>ωp,dynamic valence electron screening must be largely suppressed; seeJ. J. Rehr, E. Zaremba andW. Kohn:Phys. Rev. B,12, 2062 (1975), andJ. Mahanty andR. Taylor:Phys. Rev. B,17, 554 (1978).

    Article  ADS  Google Scholar 

  13. For further detaile seeK. K. Mon, N. W. Ashcroft andG. V. Chester:Phys. Rev. B,19, 5103 (1979).

    Article  ADS  Google Scholar 

  14. See, for exampleA. C. Maggs andN. W. Ashcroft:Phys. Rev. Lett.,59, 113 (1987).

    Article  ADS  Google Scholar 

  15. D. C. Langreth andS. H. Vosko:Phys. Rev. Letts.,59, 497 (1987).

    Article  ADS  Google Scholar 

  16. The termpseudoatom or pseudoparticle has also been introduced in the dynamic context byC. S. Jayanthi, H. Bilz, W. Kress andG. Benedek:Phys. Rev. Lett.,59, 795 (1987). See alsoR. Goldstein, A. Parola andA. Smith:J. Chem. Phys.,91, 1843 (1989).

    Article  ADS  Google Scholar 

  17. SeeY. Morino, T. Ukaij andT. Ito:Bull. Chem. Soc. Jpn.,39, 64 (1966);K. Raghavachari, R. C. Haddon andJ. S. Binkley:Chem. Phys. Lett.,122, 219 (1985) and references therein.

    Article  Google Scholar 

  18. P. Salmon:J. Phys. F.,18, 2345 (1988). These more recent neutron scattering data seem to differ significantly from the data used byG. Kahl andJ. Hafner:Phys. Rev. A,9, 3310 (1984).

    Article  ADS  Google Scholar 

  19. R. L. Henderson:Phys. Lett. A,49, 197 (1974). Strictly speaking,uniqueness is guaranteed providingexistence is first established.

    Article  ADS  Google Scholar 

  20. The picture is one in which vibrational motion carries on for a significanr number of periods about quasi-equilibrium sitesb oij before any fast exchange may literally tranfer an atom to another dynamic unit. This is accord with the suggestion ofOrton (J. Phys. (Paris),41, Suppl. #8, Coll. C8, C8–280 (1980)) that directional order can be weakened in some fluids, but not lost.

    Google Scholar 

  21. See, for exampleN. W. Ashcroft andN. D. Mermin:Solid State Phys. (Holt Saunders, 1976), appendix N.

    Google Scholar 

  22. N. W. Ashcroft andJ. Lekner:Phys. Rev.,145, 83 (1966).

    Article  ADS  Google Scholar 

  23. A. Bererhi A. Bizid, L. Bosio, R. Cortes, A. Defrain andC. Seqaud:J. Phys. (Paris),41, Suppl. #8, Coll. C8, C8–218 (1980);M. C. Bellisent-Funel, R. Belisent andG. Tourand:J. Phys. (Paris),41, Suppl. #8, Coll. C8, C8-262 (1980).

    Google Scholar 

  24. T. E. Faber:The theory of Liquid Metals (Cambridge University Press, 1972;J. P. Hansen andI. R. McDonald:Theory of Simple Liquids, 2nd edition (Academic, New York, N. Y., 1986).

  25. The structure factor of the fluid has recently been measured byR. Bellisent, C. Bergmann, R. Ceolin andJ. P. Gaspard:Phys. Rev. Lett.,59, 661 (1987), and it clearly exhibits complex behavior suggestive of polyatomic dynamic units. The structure is similar to but more extreme than that found for phosphorus (J. S. Granada andJ. C. Dore:Mol. Phys.,46, 757 (1982). Again P4 is a relatively stable entity in the vapor phase.

    Article  ADS  Google Scholar 

  26. An interpretation of the data of ref. [31] The structure factor of the fluid has recently been measurded byR. Bellisent, C. Bergmann, R. Ceolin andJ. P. Gaspard:Phys. Rev. Lett.,59, 661 (1987), and it clearly exhibits complex behavior suggestive of polyatomic dynamic units. The structure is similar to but more extreme than that found for phosphorus (J. S. Granada andJ. C. Dore:Mol. Phys.,46, 757 (1982)) Again P4 is a relatively stable entity in the vapor phase. has recently been given byJ. Hafner:Phys. Rev. Lett.,62, 784 (1988), on the basis of ametallic state with 5 valence eletrons/atom, and single ions as the characteristic dynamic units (the first of the viewpoints discussed above). A difficulty here is that the experiment shows the fluid to be nonmetallic; further, thes-states are asserted to lie far belowp, and the assigment of 5 free electrons in a common band would also seem to be inappropriate even if the system were metallic.

    Article  ADS  Google Scholar 

  27. M. S. Daw andM. I. Baskes:Phys. Rev. Lett.,50, 1285 (1983).

    Article  ADS  Google Scholar 

  28. R. Car andM. Parrinello:Phys. Rev. Lett.,55, 2471 (1985).

    Article  ADS  Google Scholar 

  29. D. Weaire:J. Phys. C,1, 201 (1968).

    Article  ADS  Google Scholar 

  30. J. Hefner andG. Kahl:J. Phys. F,14, 2259 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashcroft, N.W. Electronic fluctuation, the nature of interactions and the structure of liquid metals. Il Nuovo Cimento D 12, 597–618 (1990). https://doi.org/10.1007/BF02453313

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02453313

PACS 51.50

PACS 61.20

PACS 61.25

Navigation