Skip to main content
Log in

Three new DNA helicases fromSaccharomyces cerevisiae

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

At least six DNA helicases have been identified during fractionation of extracts from the yeastSaccharomyces cerevisiae. Three of those, DNA helicases B, C, and D, have been further purified and characterized. DNA helicases B and C co-purified with DNA polymerse δ through several chromatographic steps, but were separated from the polymerase by hydrophobic chromatography. DNA helicase D co-purified with Replication Factor C over seven chromatographic steps, and was only separated from it by glycerol gradient centrifugation in the presence of 0.2 M NaCl. All three helicases are DNA dependent ATPases with Km values for ATP of 190 μM, 325 μM, and 60 μM for DNA helicases B, C, and D, respectively. Their DNA helicase activities are comparable. They are 5′–3′ helicases and have pH optima of 6.5–7 and Mg2+ optima of 1–2 mM. However, they differ in the nucleotide requirement for helicase action. Whereas all three helicases preferred ATP, dATP, UTP, CTP, and dCTP as cofactors, DNA helicase C also used GTP, but not dTTP. On the other hand, DNA helicase D used dTTP, but not GTP, and DNA helicase B used neither nucleotide as cofactor. These studies allowed us to conclude that DNA helicases B, C, and D are not only distinct enzymes, but also different from two previously identified yeast DNA helicases, the RAD3 protein and ATPase III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer GA, Heller HM, and Burgers PMJ (1988) DNA polymerase III fromSaccharomyces cerevisiae. I. Purification and characterization. J Biol Chem 263: 917–24

    PubMed  CAS  Google Scholar 

  • Biswas SB, and Kornberg A (1984) Nucleoside triphosphate binding to DNA polymerase III holoenzyme. J Biol Chem 259: 7990–7993

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Bruckner RC, Crute JJ, Dodson MS, and Lehman IR (1991) The herpes simplex virus 1 origin binding protein: a DNA helicase. J Biol Chem 266: 2669–2674

    PubMed  CAS  Google Scholar 

  • Burgers PMJ (1991)Saccharomyces cerevisiae Replication factor C. II. Formation and activity of complexes with the proliferating cell nuclear antigen and with DNA polymerases δ and ε. J Biol Chem 266: 22698–22706

    PubMed  CAS  Google Scholar 

  • Cha TA, and Alberts BM (1989) The bacteriophage T4 DNA replication fork. J Biol Chem 264: 12220–12225

    PubMed  CAS  Google Scholar 

  • Crute JJ et al. (1989) Herpes simplex vuris 1 helicase-primase: a complex of three herpes-encoded gene products. Proc Natl Acad Sci USA 86: 2186–2189

    Article  PubMed  CAS  Google Scholar 

  • Dailey L, Caddle MS, Heintz N, and Heintz NH (1990) Purification of RIP60 and RIP100, mammalian proteins with origin-specific DNA-binding and ATP-dependent DNA helicase activities. Mol Cell Biol 10: 6225–6235

    PubMed  CAS  Google Scholar 

  • Harosh I, Naumovski L, and Friedberg EC (1989) Purification and characterization of Rad3 ATPase/DNA helicase fromSaccharomyces cerevisiae. J Biol Chem 264: 20532–20539

    PubMed  CAS  Google Scholar 

  • Kornberg A and Baker TA (1991) DNA Replication. WH FReeman and Co New York pp 355–378

    Google Scholar 

  • Lasken RS, and Kornberg A (1988) The primosomal protein n' ofEscherichia coli is a DNA helicase. J Biol Chem 263: 5512–5518

    PubMed  CAS  Google Scholar 

  • LeBowitz JH, and McMacken R (1986) TheEscherichia coli dnaB replication protein is a DNA helicase. J Biol Chem 261: 4738–4748

    PubMed  CAS  Google Scholar 

  • Lee MS, and Marians KJ (1987)Escherichia coli replication factor Y, a component of the primosome, can act as a DNA helicase. Proc Natl Acad Sci USA 84: 8345–8349

    Article  PubMed  CAS  Google Scholar 

  • Li X, Tan CK, So AG, and Downey KM (1992a) Purification and characterization of δ helicase from fetal calf thymus. Biochemistry 31: 3507–3513

    Article  PubMed  CAS  Google Scholar 

  • Li X, Yoder BL, and Burgers PMJ (1992b) ASaccharomyces cerevisiae DNA helicase associated with Replication Factor C.J Biol Chem in press

  • Lohman TM (1992)Escherichia coli DNA helicases: mechanisms of DNA unwinding. Mol Microbiol 6: 5–14

    PubMed  CAS  Google Scholar 

  • Matson SW, and Kaiser-Rogers KA (1990) DNA helicases. Annu Rev Biochem 59: 289–329

    Article  PubMed  CAS  Google Scholar 

  • Matson SW, Tabor S, and Richardson CC (1983) The gene 4 protein of bacteriophage T7. J Biol Chem 258: 14017–14024

    PubMed  CAS  Google Scholar 

  • Richardson RW, and Nossal NG (1989) Characterization of the bacteriophage T4 gene 41 DNA helicase. J Biol Chem 264: 4725–4731

    PubMed  CAS  Google Scholar 

  • Richardson RW, and Nossal NG (1989) Trypsin cleavage in the COOH terminus of the bacteriophage T4 gene 41 DNA helicase alters the primase-helicase activities of the T4 replication complex in vitro. J Biol Chem 264: 4732–4739

    PubMed  CAS  Google Scholar 

  • Scott JF, and Kornberg A (1978) Purification of the rep protein ofEscherichia coli. J Biol Chem 253: 3292–3299

    PubMed  CAS  Google Scholar 

  • Seo YS, Lee SH, and Hurwitz J (1991) Isolation of a DNA helicase from HeLa cells requiring the multisubunit human singlestranded DNA binding protein for activity. J Biol Chem 266: 13161–13170

    PubMed  CAS  Google Scholar 

  • Siegal S, Turchi JJ, Jessee CB, Meyers TW, and Bambara RA (1992) A novel DNA helicase from calf thymus. J Biol Chem 267: 13629–13635

    PubMed  CAS  Google Scholar 

  • Stahl HP, Droge P, and Knippers R (1986) DNA helicase activity of SV40 large tumor antigen. EMBO J 5: 1939–1944

    PubMed  CAS  Google Scholar 

  • Sugino A, Ryu BH, Sugino T, Naumovski L and Friedberg EC (1986) A new DNA-dependent ATPase which stimulates yeast DNA polymerase I and has DNA-unwinding activity. J Biol Chem 261: 11744–11750

    PubMed  CAS  Google Scholar 

  • Sung P, Prakash L, Matson SW, and Prakash S (1987) RAD3 protein ofSaccharomyces cerevisiae is a DNA helicase. Proc Natl Acad Sci USA 84: 8951–8955

    Article  PubMed  CAS  Google Scholar 

  • Thommes P, Ferrari E, Jessberger R, and Hubscher U (1992) Four different DNA helicases from calf thymus. J Biol Chem. 267: 6063–6073

    PubMed  CAS  Google Scholar 

  • Thommes P, and Hubscher U (1990) DNA helicase from calf thymus. Purification to apparent homogeneity and biochemical characterization of the enzyme. J Biol Chem 265: 14347–14354

    PubMed  CAS  Google Scholar 

  • Tuteja N, Rahman K, Tuteja R, and Falaschi A (1991) DNA helicase IV from HeLa cells. Nucleic Acids Res. 19: 3613–3618

    PubMed  CAS  Google Scholar 

  • Wiekowski M, Schwarz MW, and Stahl H (1988) Simian virus 40 large T antigen DNA helicase. Characterization of the ATPase-dependent DNA unwinding activity and its substrate requirements. J Biol Chem 263: 436–442

    PubMed  CAS  Google Scholar 

  • Wong I, and Lohman TM (1992) Allosteric effects of nucleotide cofactors onEscherichia coli rep helicase-DNA binding. Science 256: 350355

    Google Scholar 

  • Yanagisawa J, Seki M, Kohda T, Enomoto T, and Ui M (1992) DNA-dependent adenosinetriphosphatase C1 from mouse FM3A cells has DNA helicase activity. J Biol Chem 267: 3644–3649

    PubMed  CAS  Google Scholar 

  • Yoder BL, and Burgers PMJ (1991)Saccharomyces cerevisiae Replication Factor C. I. Purification and Characterization of its ATPase Activity. J Biol Chem 266: 22689–22697

    PubMed  CAS  Google Scholar 

  • Zhang SS, and Grosse F (1991) Purification and characterization of two DNA helicases from calf thymus nuclei. J Biol Chem 266: 20483–20490

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Yoder, B.L. & Burgers, P.M.J. Three new DNA helicases fromSaccharomyces cerevisiae . Chromosoma 102 (Suppl 1), S93–S99 (1992). https://doi.org/10.1007/BF02451791

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02451791

Keywords

Navigation