Skip to main content
Log in

Conductivity and geometrical factors affecting volume measurements with an impedancimetric catheter

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

With a model based on Poisson’s equation, computations employing published data and measurements made in glass cylinders filled with saline, the influence of conductivity and geometry on the determination of volume was analysed with an impedancimetric catheter. Two distal electrodes inject a constant current while a set of central electrodes sense by sections the potential along the cylindrical chamber. It was concluded that each section ought to be independently calibrated, the distribution of the electrodes along the catheter and its relationship to the chamber radius being of paramount importance for a linear calibration. The ratio σ r , of the external medium conductivity σ e to the internal conductivity σ i influences drastically both the linearity and the calibration of each section. If a section volume is linearly related to the total chamber volume, that section admittance is a total volume estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arredondo, M. T., Clavin, O. E., Spinelli, J. C. andCarro, C. (1984) Relaciones entre peso total y cardíaco y parámetros del corazón. IV Reunión Científica Sociedad Argentina de Bioingeniería (SABI’84), Buenos Aires, Nov. 12.

  • Axenborg, J. (1979) An electric impedance method for measurement of aortic cross-sectional area. Technical Report 96, School of Electrical Engineering, Chalmers University of Technology, Göteborg, Sweden, 37 pages.

    Google Scholar 

  • Baan, J., Aouw Jong, T. T., Kerkhof, P. L. M., Moene, R. J. van Dijk, A. D., van der Velde, E. T. andKoops, J. (1981) Continuous stroke and cardiac output from intraventricular dimensions obtained with impedance catheter.Cardiovasc. Res.,15, 328–334.

    Article  Google Scholar 

  • Campbell, G. andFoster, R. M. (1948)The Fourier integrals for practical applications. D. Van Nostrand Co. New York, USA.

    Google Scholar 

  • Chisholm, J. S. R. andMorris, R. M. (1966)Mathematical methods in physics. North Holland, Amsterdam, 642.

    Google Scholar 

  • Clavin, O. E., Spinelli, J. C., Alonso, H., Solarz, P., Valentinuzzi, M. E. andPichel, R. H. (1983) Left intraventricular pressure-impedance diagrams (DPZ) to assess cardiac function (abstract). VIII Brazilian Congress of Biomedical Engineering, Florianopolis, SC, Brazil, Nov., 82. Also III Reunión Cientifica Sociedad Argentina de Bioingeniería (SABI’83), Tucumán, Argentina, Sept., PS1. Full paper inMed. Progr. Tech., 1986, (in press).

  • Geddes, L. A., Hoff, H. E. andMello, A. (1966a) The development and calibration of a method for the continuous measurement of stroke-volume in the experimental animal.Japan. Heart J.,7, 556–565.

    Google Scholar 

  • Geddes, L. A., Hoff, H. E., Mello, A. andPalmer, C. (1966b) Continuous measurement of ventricular stroke volume by electrical impedance.Cardiovascular Research Center Bull. (Houston, Texas, USA),4, 118–130.

    Google Scholar 

  • Herrera, M., Clavin, O. E., Spinelli, J. C. andValentinuzzi, M. E. (1984) Admitancimetro tetrapolar multicanal para mediciones intracardiacas. IV Reunión Cientifica Sociedad Argentina Biongeniería (SABI’84), Buenos Aires, Nov., 12. Also communicated to XIV ICMBE, Helsinki, Finland, Aug. 1985. Full paper inMed. Prog. Tech., 1986, (in press).

  • McKay, R. G., Spears, J. T., Aroesty, J. M., Baim, D. S., Royal, H. D., Heller, G. V., Lincoln, W., Salo, R. W., Braunwald, E. andGrossman, W. (1984) Instantaneous measurement of left and right ventricular stroke volume and pressure-volume relationships with an impedance catheter.Circulation,69, 703–710.

    Google Scholar 

  • Mur, G. andBaan, J. (1984) Computation of the input impedances of a catheter for cardiac volumetry.IEEE Trans., Eng. BME-31, 448–453.

    Google Scholar 

  • Reitz, J. R., Milford, F. J. andPerelberg, S. B. (1964)Foundations of Electromagnetic theory, Addison-Wesley Publ. Co., Reading, Massachusetts, USA, Chaps 3 and 7.

    MATH  Google Scholar 

  • Relton, R. E. (1946)Applied Bessel functions. Blackie & Son, London and Glasgow, 100–113.

    Google Scholar 

  • Rushmer, R. F., Crystal, D. K., Wagner, C. andEllis, R. M. (1953) Intracardiac impedance plethysmography.Am. J. Physiol.,174, 171–174.

    Google Scholar 

  • Spinelli, C. C., Clavin, O. E., Cabrera, E. I., Chatruc, M. R., Pichel, R. H. andValentinuzzi, M. E. (1984) Intraventricular pressure-impedance diagrams (DPZ) to determine the endsystolic points locus (abstract).The Physiologist,27, (4), 252, paper 30.2. Also Conferencia Iberoamericana de Bioingeniería (CIB’84), Gijón, Spain, June, 137. Full paper inMed. Prog. Tech., 1986, (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spinelli, J.C., Valentinuzzi, M.E. Conductivity and geometrical factors affecting volume measurements with an impedancimetric catheter. Med. Biol. Eng. Comput. 24, 460–464 (1986). https://doi.org/10.1007/BF02443959

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02443959

Keywords

Navigation