Skip to main content
Log in

Lumped-parameter model for haemodialyser with application to simulation of patient-artificial-kidney system

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A simple lumped-parameter mathematical model is developed for analysing the performance of a haemodialyser. Analytical solutions are derived for the exit concentration of solute in blood leaving the haemodialyser. A method of ana priori estimation of the model parameters is suggested. The validity of the model is illustrated by comparing it with the numerical solution of more exact 2-dimensional models and some experimental data on commercial dialysers. The utility of the model is illustrated by an application to the simulation of a patient-artificial-kidney system, wherein compact analytical expressions are shown to describe the whole complex system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

parameter defined in eqn. 14

A 11,A 12 :

parameters defined by eqns. 32 and 33, respectively

C b :

concentration of solute in blood, mole/cm3

C bi :

concentration of solute in the blood entering the dialyser, mole/cm3

C bo :

concentration of solute in the blood leaving the dialyser, mole/cm3

C d :

concentration of solute in the dialysate fluid, mole/cm3

C di :

concentration of solute in the dialysate entering, mole/cm3

C do :

concentration of solute in the dialysate leaving, mole/cm3

C dw :

concentration of solute at the wall in contact with the dialysate, mole/cm3

C t :

concentration of solute in the intracellular fluid, mole/cm3

C w :

concentration of solute at the wall in contact with the blood, mole/cm3

D :

molecular diffusivity of solute in blood, cm2/s

D 2 :

molecular diffusivity of solute in dialysate fluid, cm2/s

D E :

axial dispersion coefficient, cm2/s

h :

half-channel width of a parallel plate dialyser, cm

I :

rate of production of urea in the body, mole/s

k :

permeability of the tube wall, cm/s

k d :

effective mass-transfer coefficient for the dialysate side fluid, cm/s

k L :

effective mass-transfer coefficient from the blood to the tube wall, cm/s

K :

exchange coefficient between intra and extracellular compartments, h−1 or s−1

L :

length of the dialyser, cm

N :

rate of removal of urea in the dialyser, mole/s

P :

parameter defined by eqn. 12

P e :

parameter defined by eqn. 13

q :

ratio of flow ratio,Q B/QD

Q B :

volumetric flow rate of blood, cm3/s

Q D :

volumetric flow rate of dialysate, cm3/s

R :

radius of the tubular haemodialyser, cm

R A :

rate of solute removal at the wall, mole cm−2s−1

t :

time elapsed since start of dialysis, s

u b :

average velocity of blood, cm/s

V C :

total volume of intracellular compartment, cm3

V E :

total volume of extracellular compartment, cm3

W :

width of the dialysate groove, cm

x :

axial distance, cm

x * :

dimensionless axial distance,x/L

y :

dimensionless axial length of the dialyser (LD/u b R2 for tubular andLD/u b h2 for flat plate dialysers, respectively)

α:

parameter defined in eqn. 15 or 16

β 1,β 2 :

parameters defined in eqns. 42 and 43, respectively

γ:

geometry factor (=1 for flat plate, 2 for cylinder)

λ 1,λ 2 :

roots of eqn. 38

ν:

dimensionless wall permeabilitykR/D

References

  • Abbrecht, P. M., andProdany, N. W. (1971) A model of the patient artificial kidney system.IEEE Trans. BME-18, 257.

    Google Scholar 

  • Bell, R. L., Curtis, F. K. andBabb, A. L. (1965) Analog simulation of the patient artificial kidney system.Trans. Am. Soc. Art. Internal Organs,11, 183.

    Google Scholar 

  • Colton, C. K. (1967) A review of the development and performance of haemodialysers. NIH, US PHS, Federal Clearing House Accession PB-182-281.

  • Colton, C. K., Smith, K. A., Merrill, E. W. andReece, J. M. (1970) Diffusion of organic solutes in stagnant plasma and red cell suspensions.Chem. Eng. Prog. Sym. Series,66, (99), 85.

    Google Scholar 

  • Colton, C. K., Smith, K. A., Stroeve, P. andMerrill, E. W. (1971) Diffusion of urea in flowing blood.Am. Inst. Chem. Eng. J.,17, 773.

    Google Scholar 

  • Cooney, D. O., Davis, E. J. andKim, S. S. (1974) Mass transfer in parallel plate dialysers — A conjugated boundary value problem.Chem. Eng. J. 8, 213.

    Article  Google Scholar 

  • Davis, H. R. andParkinson, G. V. (1970) Mass transfer from small capillaries with wall resistance in the laminar flow regime.Appl. Sci. Res.,22, 20.

    MATH  Google Scholar 

  • Dedrick, R. L. andBischoff, K. B. (1967) Pharmacokinetics in application of artificial kidney.Chem. Eng. Prog. Symp. Series,64, (84), 32.

    Google Scholar 

  • Erdogan, M. E. (1967) Dispersion of matter in Non-Newtonian flow at low flow rates.Ind. Eng. Chem. Fund.,3, 463.

    Article  Google Scholar 

  • Gormley, Y. W. andBell, R. L. (1970) The dynamics of urea transfer and celebral pressure during rapidly changing urea levels in the blood.Chem. Eng. Prog. Symp. Series,66, 99.

    Google Scholar 

  • Grimsrud, L. andBaab, A. C. (1966) Velocity and concentration profile for laminar flow of a Newtonian fluid in a dialyser.Chem. Eng. Prog. Symp. Series,62, 20.

    Google Scholar 

  • Hyman, W. A. (1975) Augmented diffusion in flowing blood.Trans. ASME,58.

  • King, P. H., Baker, W. R., Ginn, M. E. andFrost, A. B. (1968) Computer optimization of haemodialysis.Trans. Am. Soc. Art. Internal Organs,14, 389.

    Google Scholar 

  • Kooijman, J. M. (1972) Flow and Mass transfer in haemodialysers—Influence of non-Newtonian blood flow.Chem. Eng J,4, 189

    Article  Google Scholar 

  • Kooijman, J. M. (1973) Laminar heat or mass transfer in rectangular channels and in cylindrical tubes for fully developed flow.Chem. Eng. Sci.,28, 1149.

    Article  Google Scholar 

  • Knudsen, J. G. andKatz, D. L. (1958) Fluid dynamics and heat transfer. McGraw-Hill, New York, 403.

    Google Scholar 

  • Levenspiel, O. (1972) Chemical Reaction Engineering. 2nd edn., Wiley, New York.

    Google Scholar 

  • Lightfoot, E. N. (1974) Transport phenomena in living systems. Wiley, New York.

    Google Scholar 

  • Mashelkar, R. A. andRamachandran, P. A. (1975) A new model for hollow fibre enzyme reactor.J. Appl. Chem. & Bio. Tech.,25, 867.

    Google Scholar 

  • Pappenheimer, J. R. (1957) Passage of molecules through capillary walls.Physiol. Rev.,33, 387.

    Google Scholar 

  • Ramachandran, P. A. andMashelkar, R. A. (1975) Axial dispersion model analysis of homogeneous-. heterogeneous reactions in a tubular reactor.Lett. Heat & Mass Transfer,2, 213.

    Article  Google Scholar 

  • Ramachandran, P. A. andMashelkar, R. A. (1978) Transient analysis of a haemodialyser. Unpublished work.

  • Ramirez, W. F., Mickley, M. C. andLewis, D. N. (1971) Mathematical Modelling of a KIIL haemodialyser.Chem. Eng. Prog. Symp. Series,114, (67), 116.

    Google Scholar 

  • Sankarasubramanian, S. andGill, W. N. (1974) Unsteady convective diffusion with interphase mass transfer.Proc. R. Soc.,A333, 115.

    Google Scholar 

  • Shettigar, U. R., Deepak, D. andGhista, D. N. (1977) A model of the patient-dialysis treatment to study the dynamics of metabolic waste concentrations.Med. & Biol. Eng. & Comput.,15, 124.

    Google Scholar 

  • Taylor, G. I. (1953) Dispersion of soluble matter in solvents flowing slowly through a pipe.Proc. R. Soc.,A219, 186.

    Google Scholar 

  • Wolf, M. B., Watson, P. D. andBarbour, P. H. (1969) Theoretical evaluation of a patient artificial kidney system using a Kiil dialyser. Rand Corporation, Santa Monica, California, Memo RM 5955, NIM.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramachandran, P.A., Mashelkar, R.A. Lumped-parameter model for haemodialyser with application to simulation of patient-artificial-kidney system. Med. Biol. Eng. Comput. 18, 179–188 (1980). https://doi.org/10.1007/BF02443292

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02443292

Keywords

Navigation