Skip to main content
Log in

Immunohistochemical localization of synaptophysin (p38) in the pineal gland of the Mongolian gerbil (Meriones unguiculatus)

  • Original Articles
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

Synaptophysin (protein p38), a major integral membrane glycoprotein of small presynaptic vesicles, was localized immunohistochemically in semithin sections of the superficial pineal gland of the Mongolian gerbil (Meriones unguiculatus). Synaptophysin immunoreactivity could be detected in all pinealocytes, which were visualized with antibodies directed against neuron-specific enolase (NSE) in adjacent sections. No p38 immunoreactivity was discernible in the interstitial glial cells, which showed a heterogeneous pattern of immunostaining for the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin. Pinealocytes exhibited considerable intercellular differences in the densities of immunostaining. The various degrees of synaptophysin immunoreactivities in pinealocytes were not correlated with the densities of NSE immunostaining. Nerve terminals and varicosities displayed stronger immunoreactivities than pinealocytes. They were particularly numerous in the perivascular spaces. It is not clear whether this distribution indicates an innervation of pineal capillaries in addition to the functionally important innervation of pinealocytes. Several highly p38-positive dots of variable size were a conspicuous feature throughout the gland. By the consecutive semithin-thin section technique, they could be identified as processes of pinealocytes, filled with accumulations of small clear vesicles. Obviously, these vesicles represent the major site of synaptophysin immunoreactivity in pinealocytes. In the gerbil, similar vesicles have been ascribed a role in the secretory activity of the gland, and/or in the transport of calcium. The intercellular differences in the degrees of p38 immunostaining may, therefore, reflect different states of a specific cellular activity. The presence of synaptophysin in pinealocytes of the normal pineal, including the deep portions of the gland, emphasizes the paraneuronal character of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bishop AE, Carlei F, Lee V, Trojanowski J, Marangos PJ, Dahl D, Polak JM (1985) Combined immunostaining of neurofilaments, neuron specific enolase, GFAP and S-100. A possible means for assessing the morphological and functional status of the enteric nervous system. Histochemistry 82:93–97

    Article  PubMed  CAS  Google Scholar 

  • Boeckmann D (1980) Morphological investigation of the deep pineal of the rat. Cell Tissue Res 210:283–294

    Article  PubMed  CAS  Google Scholar 

  • Calvo J, Boya J, Borregon A, Garcia-Maurino JE (1988) Presence of glial cells in the rat pineal gland: a light and electron microscopic immunohistochemical study. Anat Rec 220:424–428

    Article  PubMed  CAS  Google Scholar 

  • Collins VP (1987) Pineocytoma with neuronal differentiation demonstrated immunocytochemically. Acta Pathol Microbiol Immunol Scand [A] 95:113–117

    CAS  Google Scholar 

  • Ehrhart M, Jörns A, Grube D, Gratzl M (1988) Cellular distribution and amount of chromogranin A in bovine endocrine pancreas. J Histochem Cytochem 36:467–472

    PubMed  CAS  Google Scholar 

  • Fujita T, Kanno T, Kobayashi S (1988) The paraneuron. Springer, Tokyo

    Google Scholar 

  • Gould VE, Lee I, Wiedenmann B, Moll R, Chejfec G, Franke WW (1986) Synaptophysin: a novel marker for neurons, certain neuroendocrine cells, and their neoplasms. Hum Pathol 17:979–983

    PubMed  CAS  Google Scholar 

  • Grube D (1980) Immunoreactivities of gastrin (G-) cells. II. Nonspecific binding of immunoglobulins to G-cells by ionic interactions. Histochemistry 66:149–167

    Article  PubMed  CAS  Google Scholar 

  • Grube D, Kusumoto Y (1986) Serial semithin sections in immunohistochemistry: Techniques and applications. Arch Histol Jpn 49:391–410

    PubMed  CAS  Google Scholar 

  • Haimoto H, Takahashi Y, Koshikawa T, Nagura H, Kato K (1985) Immunohistochemical localization of γ-enolase in normal human tissues other than nervous and neuroendocrine tissues. Lab Invest 52:257–263

    PubMed  CAS  Google Scholar 

  • Higley HR, McNulty JA, Rowden G (1984) Glial fibrillary acidic protein and S-100 protein in pineal supportive cells: an electron microscopic study. Brain Res 304:117–120

    Article  PubMed  CAS  Google Scholar 

  • Hoog A, Gould VE, Grimelius L, Franke WW, Falkmer S, Chejfec G (1988) Tissue fixation methods alter the immunohistochemical demonstrability of synaptophysin. Ultrastruct Pathol 12:673–678

    PubMed  CAS  Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques. A comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    PubMed  CAS  Google Scholar 

  • Jahn R, Schiebler W, Ouimet C, Greengard P (1985) A 38, 000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci USA 82:4137–4141

    Article  PubMed  CAS  Google Scholar 

  • Japha JL, Eder TJ, Goldsmith ED (1974) Morphological and histochemical features of the gerbil pineal system. Anat Rec 178:381–382

    Google Scholar 

  • Japha JL, Eder TJ, Goldsmith ED (1976) Calcified inclusions in the superficial pineal gland of the Mongolian gerbil,Meriones unguiculatus. Acta Anat 94:533–544

    PubMed  CAS  Google Scholar 

  • Juillard MT, Collin JP (1980) Pools of serotonin in the pineal gland of the mouse: the mammalian pinealocyte as a component of the diffuse neuroendocrine system. Cell Tissue Res 213:273–291

    Article  PubMed  CAS  Google Scholar 

  • Kivelä T, Tarkkanen A, Virtanen I (1989) Synaptophysin in the human retina and retinoblastoma. An immunohistochemical and western blotting study. Invest Ophthalmol Vis Sci 30:212–219

    PubMed  Google Scholar 

  • Kuwano R, Iwanaga T, Nakajima T, Masuda T, Takahashi Y (1983) Immunocytochemical demonstration of hydroxyindole O-methyltransferase (HIOMT), neuron-specific enolase (NSE) and S-100 protein in the bovine pineal. Brain Res 274:171–175

    Article  PubMed  CAS  Google Scholar 

  • Lowe AW, Madeddu L, Kelly RB (1988) Endocrine secretory granules and neuronal synaptic vesicles have three integral membrane proteins in common. J Cell Biol 106:51–59

    Article  PubMed  CAS  Google Scholar 

  • Møller M (1985) Non-sympathetic synaptic innervation of the pinealocyte of the Mongolian gerbil (Meriones unguiculatus): an electron microscopic study. J Neurocytol 14:541–550

    Article  PubMed  Google Scholar 

  • Møller M, Ingild A, Bock E (1978) Immunohistochemical demonstration of S-100 protein and GFA protein in interstitial cells of rat pineal gland. Brain Res 140:1–13

    Article  PubMed  Google Scholar 

  • Navone F, Jahn R, DiGioia G, Stukenbrok H, Greengard P, De Camilli P (1986) Protein p38: an integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J Cell Biol 103:2511–2527

    Article  PubMed  CAS  Google Scholar 

  • Nielsen JT, Møller M (1978) Innervation of the pineal gland in the Mongolian gerbil (Meriones unguiculatus). A fluorescence microscopical study. Cell Tissue Res 187:235–250

    Article  PubMed  CAS  Google Scholar 

  • Obendorf D, Schwarzenbrunner U, Fischer-Colbrie R, Laslop A, Winkler H (1988) In adrenal medulla synaptophysin (protein p38) is present in chromaffin granules and in a special vesicle population. J Neurochem 51:1573–1580

    PubMed  CAS  Google Scholar 

  • Osborn M, Debus E, Weber K (1984) Monoclonal antibodies specific for vimentin. Eur J Cell Biol 34:137–143

    PubMed  CAS  Google Scholar 

  • Pearse AGE, Takor Takor T (1979) Embryology of the diffuse neuroendocrine system and its relationship to the common peptides. Fed Proc Fed Am Soc Exp Biol 38:2288–2294

    CAS  Google Scholar 

  • Radke R, Stach W (1986) Are the islets of Langerhans neuroparaneuronal control centers of the exocrine pancreas? Arch Histol Jpn 49:411–420

    PubMed  CAS  Google Scholar 

  • Redecker P (1987) Golgi-like immunostaining of pituicytes and tanycytes positive for glial fibrillary acidic protein in the neurohypophysis of the Mongolian gerbil (Meriones unguiculatus). Histochemistry 87:585–595

    Article  PubMed  CAS  Google Scholar 

  • Rehm H, Wiedenmann B, Betz H (1986) Molecular characterization of synaptophysin, a major calcium-binding protein of the synaptic vesicle membrane. EMBO J 5:535–541

    PubMed  CAS  Google Scholar 

  • Schachner M, Huang SK, Ziegelmüller P, Bizzini B, Taugner R (1984) Glial cells in the pineal gland of mice and rats. A combined immunofluorescence and electron-microscopic study. Cell Tissue Res 237:245–252

    Article  PubMed  CAS  Google Scholar 

  • Scheuermann DW, Stach W, Timmermans J-P, Adriaensen D, De Groodt-Lasseel MHA (1989) Neuron-specific enolase and S-100 protein immunohistochemistry for defining the structure and topographical relationship of the different enteric nerve plexuses in the small intestine of the pig. Cell Tissue Res 256:65–75

    Article  PubMed  CAS  Google Scholar 

  • Schilling K, Gratzl M (1988) Quantification of p38/synaptophysin in highly purified adrenal medullary chromaffin vesicles. FEBS Lett 233:22–24

    Article  PubMed  CAS  Google Scholar 

  • Schilling K, Blanco Barco E, Rhinehart D, Pilgrim Ch (1989) Expression of synaptophysin and neuron-specific enolase during neuronal differentiation in vitro: effects of dimethyl sulfoxide. J Neurosci Res 24:347–354

    Article  PubMed  CAS  Google Scholar 

  • Schmechel D, Brightman M, Goodwin F (1978) Brain enolases as specific markers of neuronal and glial cells. Science 199:313–315

    PubMed  CAS  Google Scholar 

  • Sternberger LA (1986) Immunocytochemistry (3rd edn). Wiley, New York

    Google Scholar 

  • Südhof TC, Lottspeich F, Greengard P, Mehl E, Jahn R (1987) A synaptic vesicle protein with a novel cytoplasmic domain and four transmembrane regions. Science 238:1142–1144

    PubMed  Google Scholar 

  • Vollrath L, Schröder H (1987) Neuronal properties of mammalian pinealocytes? In: Trentini GP, De Gaetani C, Pevet P (eds) Fundamentals and clinics in pineal research, vol 44. Raven Press, New York, pp 13–23

    Google Scholar 

  • Welsh MG (1984) Cytochemical analysis of calcium distribution in the superficial pineal gland of the Mongolian gerbil. J Pineal Res 1:305–316

    PubMed  CAS  Google Scholar 

  • Welsh MG, Reiter RJ (1978) The pineal gland of the gerbil,Meriones unguiculatus. I. An ultrastructural study. Cell Tissue Res 193:323–336

    Article  PubMed  CAS  Google Scholar 

  • Welsh MG, Cameron IL, Reiter RJ (1979) The pineal gland of the gerbil,Meriones unguiculatus. II. Morphometric analysis over a 24-hour period. Cell Tissue Res 204:95–109

    Article  PubMed  CAS  Google Scholar 

  • Wiedenmann B, Franke WW (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of M 38, 000 characteristic of presynaptic vesicles. Cell 41:1017–1028

    Article  PubMed  CAS  Google Scholar 

  • Wiedenmann B, Franke WW, Kuhn C, Moll R, Gould VE (1986) Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proc Natl Acad Sci USA 83:3500–3504

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redecker, P., Grube, D. & Jahn, R. Immunohistochemical localization of synaptophysin (p38) in the pineal gland of the Mongolian gerbil (Meriones unguiculatus). Anat Embryol 181, 433–440 (1990). https://doi.org/10.1007/BF02433790

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02433790

Key words

Navigation