Skip to main content
Log in

Properties of extrachromosomal covalently closed circular DNA isolated and cloned from aged human fibroblasts

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Extrachromosomal molecules of covalently closed cirular DNA (cccDNAs) were isolated from human fibroblasts near the end of their in vitro replicative lifespan and cloned into plasmid pBR322. Uncloned cccDNAs varied from several hundred to several thousand base pairs in size and contained a higher proportion of sequences homologous to the interspersed repetitive sequences AluI (SINES) and Kpnl (LINES), than to human alphoid and satellite III sequences that are tandemly repeated in the genome. After molecular cloning into pBR322, cccDNA inserts also showed a 3 to 4 fold over-representation of sequences homologous to Kpnl. There was also a strong age-dependent decline in the number of fibroblast RNA transcripts homologous to one of the cccDNAs containing a Kpnl sequence. The average size of cloned fibroblast cccDNAs was 2.52 kilobase pairs (Kbp) which is several fold larger than that reported for permanent mammalian cell lines. This may reflect fundamental differences in the mechanisms of generation of cccDNAs between mortal and immortal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell, A.: Some general questions about moveable elements and their implications. Cold Spring Harbor Symposia on Quantitative Biology, Vol. 45:1–9, 1981.

    PubMed  CAS  Google Scholar 

  2. Calos, M.P. and Miller, M.H.: Transposable elements. Cell, 20:579–595, 1980.

    Article  PubMed  CAS  Google Scholar 

  3. Cohen, S.N. and Shapiro, J.A.: Transposable genetic elements: they bypass the rules of ordinary genetic recombination and join together segments of DNA that are unrelated, transferring groups of genes among plasmids, viruses and chromosomes in living cells. Scientific American, 242:40–49, 1980.

    Article  PubMed  CAS  Google Scholar 

  4. Kutsukake, I.T.: Transacting genes of bacteriophage P1 and Mu mediate inversion of a specific DNA segment involved in flagellar variation of Salmonella. Cold Spring Harbor Symposia on Quantitative Biology, Vol. 45, Part 1, pp. 11–16, 1981.

    PubMed  Google Scholar 

  5. Chalef, D.T. and Fink, G.R.: Genetic events associated with an insertion mutation in yeast. Cell, 21: 227–237, 1980.

    Article  Google Scholar 

  6. Roeder, G.S. and Fink, G.R.: DNA rearrangements associated with a transposable element in yeast. Cell, 21:239–249, 1983.

    Article  Google Scholar 

  7. Holm, C.: Clonal lethality caused by the yeast plasmid 2μ DNA. Cell, 19:585–594, 1982.

    Article  Google Scholar 

  8. Potter, S., Truett, M., Phillips, M., and Mohar, A.: Eucaryotic transposable elements with inverted terminal repeats. Cell, 20:639–747, 1980.

    Article  PubMed  CAS  Google Scholar 

  9. Potter, S.S., Brorein, W.J., Dunsmuir, P., and Rubin, G.M.: Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell, 17:415–427, 1979.

    Article  PubMed  CAS  Google Scholar 

  10. Green, M.M.: Transposable elements in Drosophila and other Diptera. Ann. Rev. Genetics, 173: 71–84, 1981.

    Google Scholar 

  11. Will, B.M., Bayeu, A.A., and Finnegan, D.J.: Nucleotide sequence of terminal repeats of 412 transposable elements of Drosophila melanogaster. J. Mol. and General Biol., 153:897–915, 1981.

    Article  CAS  Google Scholar 

  12. Tudzynski, P. and Esser, K.: Chromosomal and extrachromosomal control of senescence in the ascomycete Podospora anserina. Mol. and General Genetics, 173:71–84, 1979.

    Article  CAS  Google Scholar 

  13. Wright, R.M. and Cummings, D.J.: Integration of mitochondrial gene sequences within the nuclear genome during senescence in a fungus. Nature, 302:86–88, 1983.

    Article  PubMed  CAS  Google Scholar 

  14. Flavell, A.J., Lewis, R., Simon, M.A., and Rubin, G.M.: Nucleic Acids Res. The 5′ termini of RNAs encoded by the transposable element copia. Nucl. Acids Res., 9:6279–6291, 1980.

    Google Scholar 

  15. Flavell, A.J. and Ish-Horowicz, D.: Extra-chromosomal circular copies of the eukaryotic transposable element copia in cultured Drosophila cells. Nature, 292:591–595, 1981.

    Article  PubMed  CAS  Google Scholar 

  16. Sabran, J.L., Hsu, T., Yeates, D., Kaji, A., Mason, W.S., and Taylor, J.M.: Analysis of integrated avian RNA tumor virus DNA in transformed chicken, duck and quail fibroblasts. J. Virology, 29:170–184, 1979.

    PubMed  CAS  Google Scholar 

  17. Dhar, R., McClements, W.L., Enquist, L.W., and Vande Woude, G.F.: Nucleotide sequences of integrated Moloney sarcoma provirus long terminal repeats and their host and viral junctions. Proc. Natl. Acad. Sci. USA, 77:3937–3941, 1980.

    PubMed  CAS  Google Scholar 

  18. Smith, C.A.: Vinograd, J. Small polydisperse circular DNA of HeLa cells. J. Mol. Biol. 69: 163–178, 1982.

    Article  Google Scholar 

  19. Delap, R.J. and Rush, M.G.: Change in quantity and size distribution of small circular DNAs during development of chicken bursa. Proc. Natl. Acad. Sci. USA, 75:5855–5859, 1978.

    PubMed  CAS  Google Scholar 

  20. Higuchi, R., Stang, H.D., Browne, J.K., Martin, M.O, Huot, M., Lipeles, J., and Salser, W.: Human ribosomal RNA gene spacer sequences are found interspersed elsewhere in the genome. Gene, 15:177–186, 1981.

    Article  PubMed  CAS  Google Scholar 

  21. Schon, E.A., Cleary, M.L., Haynes, J.R., and Longrel, J.B.: Structure and evolution of goat alpha-, beta(C)-and beta(A)-globin genes; three developmentally regulated genes contain inserted elements. Cell, 27:359–369, 1981.

    Article  PubMed  CAS  Google Scholar 

  22. Krolewski, J.J., Schindler, C.W., and Rush, M.G.: Members of the alu family of interspersed, repetitive DNA sequences are in the small circular DNA population of monkey cells grown in culture. J. Mol. Biol., 174: 41–54, 1984.

    Article  PubMed  CAS  Google Scholar 

  23. Potter, S.S.: Rearranged sequences of a human Kpnl element. Proc. Natl. Acad. Sci. USA, 81:1012–1016, 1984.

    PubMed  CAS  Google Scholar 

  24. Grimaldi, G. and Singer, H.F.: Members of the Kpnl family of long interspersed repeated sequences join and interrupt alpha-satellite in the monkey genome. Nucl. Acids Res., 11:321–338, 1983.

    PubMed  CAS  Google Scholar 

  25. Krolewski, J.J., Schindler, C.W., and Rush, M.G.: Some extrachromosomal circular DNAs containing the Alu family of dispersed repetitive sequences may be reverse transcripts. J. Mol. Biol., 174:41–54, 1984.

    Article  PubMed  CAS  Google Scholar 

  26. Riabowol, K., Shmookler Reis, R.J., and Goldstein, S.: Interspersed repetitive and tandemly repetitive sequences are differentially represented in extrachromosomal covalently closed circular DNA of human diploid fibroblasts. Nucl. Acids Res., 13:5563–5584, 1985.

    PubMed  CAS  Google Scholar 

  27. Banerji, J., Rusconi, S., and Schaffner, W.: Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell, 27:299–308, 1981.

    Article  PubMed  CAS  Google Scholar 

  28. Bishop, J.M.: Enemies within: the genesis of retrovirus oncogenes. Cell, 23:5–6, 1981.

    Article  PubMed  CAS  Google Scholar 

  29. Birnboim, H.C. and Doly, J.: A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids Res., 7:1513–1523, 1979.

    PubMed  CAS  Google Scholar 

  30. Maniatis, T., Fritsch, E.F., and Sambrook, J.: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, 1982.

  31. Jeffreys, A.J., Wilson, V., and Thein, S.L.: Hypervariable ‘minisatellite’ regions in human DNA. Nature, 314:677–673, 1985.

    Article  Google Scholar 

  32. Drouin, J.: Cloning of human mitochondrial DNA in Escherichia coli. J. Mol. Biol., 140: 15–34, 1980.

    Article  PubMed  CAS  Google Scholar 

  33. Stanfield, S.W. and Helinski, D.R.: Cloning and characterization of small circular DNA from Chinese hamster ovary cells. Mol. Cell. Biol. 4:173–180, 1984.

    PubMed  CAS  Google Scholar 

  34. Yamagishi, H., Kunisada, T., and Tsuda, T.: Small circular DNA complexes in eukaryotic cells. Plasmid, 8:299–306, 1982.

    Article  PubMed  CAS  Google Scholar 

  35. Singer, M.F.: Highly Repeated Sequences in Mammalian Genomes. Intl. Rev. Cytol., 76: 67–112, 1982.

    Article  CAS  Google Scholar 

  36. Shmookler Reis, R.S., Srivastava, A., Beranek, D.T., and Goldstein, S.: J. Mol. Biol. in press (1985).

  37. Wu, J.C. and Manuelidis, L.: Sequence definition and organization of a human repeated DNA. J. Mol. Biol., 142:363–386, 1980.

    Article  PubMed  CAS  Google Scholar 

  38. Shmookler Reis, R.J., Srivastava, A., Riabowol, K.T., Hardin, J.W., and Goldstein, S.: Amplification, rearrangement and expression of DNA sequences during aging of human cells, in: Molecular Biology of Aging: Gene Stability and Gene Expression. Edited by Sohal, R.S., Birnbaum, L., and Cutler, R.G., New York, Raven Press, 1985, in press.

    Google Scholar 

  39. Shafit-Zagardo, B., Maio, J.J., and Brown, F.L.: Kpnl families of long, interspersed repetitive DNAs in human and other primate genomes. Nucl. Acids Res., 10:3175–3193, 1982.

    PubMed  CAS  Google Scholar 

  40. Gilespie, D., Adams, J.W., Costanzi, C., and Caranfa, M.J.: New orientations of ancestral, “long interspersed repeated sequences”. Gene, 20:409–414, 1982.

    Article  Google Scholar 

  41. Sun, L., Paulson, K.E., Schmid, C.W., Kadyk, L., and Leinwand, L.: Non-Alu family interspersed repeates in human DNA and their transcriptional activity. Nucl. Acids Res., 12:2669–2689, 1984.

    PubMed  CAS  Google Scholar 

  42. Bertelsen, A.H., Humayun, H.Z., Karfopoulos, S.G., and Rush, M.G.: Molecular characterization of small polydisperse circular deoxyribonucleic acid from an African green monkey cell line. Biochem, 21:2076–2085, 1982.

    Article  CAS  Google Scholar 

  43. Jelinek, W.R., Toomey, T.B., Leinwand, L., Duncan, C., Biro, P., Choudary, P.V., Weisman, S.M., Rubin, C.M., Deininger, P.L., and Schmid, C.W.: Ubiquitous interspersed repeated sequences in mammalian genomes. Proc. Natl. Acad. Sci. USA, 77:1398–1402, 1980.

    PubMed  CAS  Google Scholar 

  44. Houck, C.M., Rinehart, F.P., and Schmid, C.W.: A ubiquitous family of repeated DNA sequences in the human genome. J. Mol. Biol., 132:289–306, 1979.

    Article  PubMed  CAS  Google Scholar 

  45. Grimaldi, G., Skowronski, J., and Singer, M.F.: Defining the beginning and end of 6Kpnl family segments. EMBO J., 3:1753–1759, 1984.

    PubMed  CAS  Google Scholar 

  46. Jacobs, J.P., Jones, C.M., and Baillie, J.P.: Characteristics of a human diploid cell designed MRC-5. Nature, 227:168–170 (1970).

    Article  PubMed  CAS  Google Scholar 

  47. Milsted, A., Day, D.L., and Cox, R.P.: Glycopeptide Hormone Production by Cultured Human Diploid Fibroblasts. J. Cell. Physiol., 113:420–426 (1982).

    Article  PubMed  CAS  Google Scholar 

  48. Macieira-Coelho, A.: Implications of the reorganization of the cell genome for aging or immortalization of dividing cells in vitro. Gerontology, 26:276–282, 1980.

    Article  PubMed  CAS  Google Scholar 

  49. Harley, C.B. and Goldstein, S.: Cultured human fibroblasts: Distribution of cell generations and a crucial limit. J. Cell. Physiol., 97:509–516, 1978.

    Article  PubMed  CAS  Google Scholar 

  50. Schneider, E.L. and Stanbridge, E.J.: A simple biochemical technique for the detection of mycoplasma contamination of cultured cells. Methods in Cell Biology, Vol. 10, Ch. 16, 1975.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dr. Riabowol is the first runner-up for the 1985 Walter Nicolai Award.

About this article

Cite this article

Riabowol, K.T., Shmookler Reis, R.J. & Goldstein, S. Properties of extrachromosomal covalently closed circular DNA isolated and cloned from aged human fibroblasts. AGE 8, 114–121 (1985). https://doi.org/10.1007/BF02431951

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02431951

Keywords

Navigation