Skip to main content
Log in

Appearance, fixation and stabilisation of environmentally induced phenotypic changes as a microevolutionary event

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Certain phenotypic changes originally induced by direct environmental effects (which can be modelled experimentally) and later reflected by corresponding changes in the genotype (revealed by differences in the reaction of individuals from different populations under the same environmental conditions) highlight one of the main trends in microevolutionary processes. During that process, a decrease of initially increased levels of stochastic variation marks the stabilisation of development in a new environment as a change in optimal developmental conditions.

Concordance of interpopulation phenotypic differences with experimentally established dependence on developmental conditions and climatic conditions within habitats signifies the role of environment (by replacing the modification response within the limits of the reaction norm with a corresponding change in the reaction norm). Disturbances of this concordance suggest that some traits of microphylogenesis are playing a role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames, L. J., J. D. Felley & M. H. Smith, 1979. Amounts of asymmetry in Centrarchid fish inhabiting heated and non-heated reservoirs. Trans. Am. Fish Soc. 108: 489–4905.

    Article  Google Scholar 

  • Astauroff, B. L., 1930. Analyse der erblichen Storungsfalle der bilateralen Symmetrie in Zusammenhang mit der selbstandigen Variabilitat ahnlicher Strukturen. Z. Indukt. Abstamm. Vererb. 55: 183–262.

    Article  Google Scholar 

  • Clarke, G. M. & J. A. McKenzie, 1992a. Coadaptation, developmental stability, and fitness of insecticide resistance genotypes in Australian sheep blowfly, Lucilia cuprina: a review. Acta Zool. Fennica 191: 107–110.

    Google Scholar 

  • Clarke, G. M. & J. A. McKenzie, 1992b. Fluctuating asymmetry as a quality control indicator for insect mass rearing processes. J. Econ. Entomology 85: 2045–2050.

    Google Scholar 

  • De Marinis, F., 1959. The nature of asymmetry and variability in the double Bar-eyelessDrosophila. Genetics 44: 1101–1111.

    Google Scholar 

  • Fox, W., 1948. Effect of temperature on development of scutellation in the Garten snake (Thanophis elegans atratus). Copeia 4: 252–262.

    Article  Google Scholar 

  • Fox, W., C. Gordon & M. H. Fox, 1961. Morphological effects of low temperatures during the embryonic development of the Garten snake (Thanophis elegans). Zoologica 46: 57–71.

    Google Scholar 

  • Graham, J. H., 1992. Genomic coadaptation and developmental stability inhybrid zones. Acta Zool. Fennica, 1992, 191: 121–132.

    Google Scholar 

  • Hubbs, C., 1922. Variations in the number of vertebrae and other meristic character of fishes correlated with the temperature of the water during development. Am. Nat. 56: 360–372.

    Article  Google Scholar 

  • Jagoe, C. H. & T. A. Haines, 1985. Fluctuating asymmetry in fishes inhabiting acidified and unacifidied lakes. Can. J. Zool. 83: 130–138.

    Article  Google Scholar 

  • Kat, P. W., 1982. The relationship between heterozygosity for enzyme loci and developmental homeostasis in peripheral populations of aquatic bivalves (Unionidae). Am. Nat. 119: 824–832.

    Article  Google Scholar 

  • Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1992. Genetic, environmental, and developmental causes of meristic variation in rainbow trout. Acta Zool. Fennica 191: 79–96.

    Google Scholar 

  • Lindsey, C. C., 1954. Temperature-controlled meristic variation in the paradise fish (Macropodus opercularis). Can. J. Zool. 32: 87–98.

    Article  Google Scholar 

  • Lindsey, C. C., 1962. Observations on meristic variation in nine-spine stickleback (Pungitius pungitius), reared at different temperatures. Can. J. Zool. 40: 1237–1247.

    Google Scholar 

  • Mason, L. G., P. R. Erlich & T. C. Emmel, 1967. The population biology of the butterflyEuphydryas editha. V. Character cluster and asymmetry. Evolution 21: 85–91.

    Article  Google Scholar 

  • Mather, K., 1953. Genetical control of stability in development. Heredity 7: 297–336.

    Google Scholar 

  • McPhail, J. D., 1963. Geographic variation in North American nine-spine sticklebacks (Pungitius pungitius). J. Fish. Res. Board Can. 20: 27–44.

    Google Scholar 

  • Osgood, D. W., 1978. Effects of temperature on the development of meristic characters inNatrix fasciata. Copeia 1: 33–47.

    Article  Google Scholar 

  • Palmer, A. R. & C. Strobeck, 1986. Fluctuating asymmetry: measurement, analysis, patterns. Ann. Rev. Syst. 17: 391–421.

    Article  Google Scholar 

  • Reeve, E. C. R., 1960. Some genetic tests on asymmetry of sternopleural chaeta number inDrosophila. Genet Res. 1: 151–172.

    Article  Google Scholar 

  • Schmalhausen, I. I., 1949. Factors of Evolution: The Theory of Stabilizing Selection. (in Russian) Nauka, Moscow.

    Google Scholar 

  • Shiskin, M. A., 1992. Evolution as a maintenance of ontogenetic stability. Acta Zool. Fennica 191: 37–42.

    Google Scholar 

  • Soulé, M., 1967. Phenetics of natural populaitons. II. Asymmetry and evolution in a lizard. Am. Nat. 101: 141–160.

    Article  Google Scholar 

  • Soulé, M. & B. Baker, 1968. Phenetics of natural populations. IV. The population asymmetry parameter in the butterflyCoenonympha tullia. Heredity 23: 611–614.

    PubMed  Google Scholar 

  • Taning, A., 1952. Experimental study of meristic characters in fishes. Biol. Rev. Camb. 27: 169–193.

    Google Scholar 

  • Thoday, J. M., 1953. Components of fitness. Symp. Soc. Exp. Biol. 7: 96–113.

    Google Scholar 

  • Thoday, J. M., 1958. Homeostasis in a selection experiment. Heredity 12: 401–415.

    Google Scholar 

  • Valentine, D. W. & M. Soulé, 1973. Effect of p.p′-DDT on developmental stability of pectoral fin rays in the grunion,Leurethes tenuis. Natl. Mar. Fish. Serv. Fish. Bull. 71: 921–925.

    Google Scholar 

  • Valentine, D. W., M. Soulé & P. Samollow, 1973. Asymmetry analysis in fishes: a possible statistical indicator of environmental stress. Natl. Mar. Fish. Serv. Fish. Bull. 71: 357–370.

    Google Scholar 

  • Van Valen, L., 1962. A study of fluctuating asymmetry. Evolution 16: 125–142.

    Article  Google Scholar 

  • Vrijenhoek, R. C. & S. Lerman, 1982. Heterozygosity and developmental stability under sexual and asexual breeding systems. Evolution 36: 768–776.

    Article  Google Scholar 

  • Waddington, C. H., 1957. The Strategy of the Genes. Allen & Unwin, London.

    Google Scholar 

  • Zakharov, V. M., 1981. Fluctuating asymmetry as an index of developmental homeostasis. Genetika (Beograd) 13:241–256.

    Google Scholar 

  • Zakharov, V. M., 1987. Animal asymmetry: a population-phenogenetic approach. (in Russian) Nauka, Moscow.

    Google Scholar 

  • Zakharov, V. M., 1989. Future prospects for population phenogenetics. Sov. Sci. Rev. F. Physiol. Gen. Biol. 4: 1–79.

    Google Scholar 

  • Zakharov, V. M., 1990. Analysis of fluctuating asymmetry as a method of biomonitoring at the population level, pp. 188–198 in Bioindications of Chemical and Radioactive Pollution. Mir, Moscow.

    Google Scholar 

  • Zakharov, V. M., 1992. Population phenogenetics: Analysis of developmental stability in natural populations. Acta Zool. Fennica, 191: 7–30.

    Google Scholar 

  • Zakharov, V. M. & A. V. Yablokov, 1990. Skull asymmetry in the Baltic Grey seal: effects of environmental pollution. Ambio 5: 266–269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharov, V.M. Appearance, fixation and stabilisation of environmentally induced phenotypic changes as a microevolutionary event. Genetica 89, 227–234 (1993). https://doi.org/10.1007/BF02424516

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02424516

Keywords

Navigation