Skip to main content
Log in

Relationship between fluctuating asymmetry, morphological modality and heterozygosity in an elderly Israeli population

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

We have been checking the following working hypotheses: 1) There is a negative correlation between genetic heterozygosity and fluctuating asymmetry (FA); 2) FA is a measure of developmental stability/instability of the whole organism, i.e. we expect negative correlation between FA and morphological proximity of a set of mass-size variables of an individual to a population centroid; and 3) FA is a measure of character-specific stability in a population, i.e. we expect correlation between magnitude of FA and deviation of an individual from the population centroid of the bilateral characters themselves. For this purpose each individual in a sample of about 200 elderly individuals was assessed for 11 polymorphic blood systems (14 genetic loci) as well as for a set of 26 anthropometric traits: 1) a set of ten mass size variables; and 2) a set of eight pairs of bilateral measurements. Four multivariate measures of morphological centrality were computed, two measures for size and two measures of shape distances from the ith individual to the population centroid for mass-size variables and also for the bilateral variables. A multivariate measure of FA for 8 bilateral pairs was also computed. No relationship was detected between FA and heterozygosity, or between FA and any of the four multivariate deviations. Thus, we concluded that our data do not support the listed hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, T. W., 1984. An introduction to multivariate-statistical analysis. Wiley and Sons, New York.

    Google Scholar 

  • Aschel, M. & M. Givon, 1982. Aging among survivors of the Holocaust. Gerontology 21–55: 55–65 (in Hebrew).

    Google Scholar 

  • Bailit, H. L., P. L. Workman, J. D. Niswander & C. J. Maclean, 1970. Dental asymmetry as an indicator of genetic and environmental conditions in human populations. Human Biology 42: 626–638.

    CAS  Google Scholar 

  • Blanco, G., J. A. Sanchez, E. Vazquez, E. Garcia & J. Rubio, 1990. Superior developmental stability of heterozygotes at enzyme loci in salmo salar L. Aquacul. 84: 199–209.

    Article  CAS  Google Scholar 

  • Clarke, G. M. & J. A. McKenzie, 1987. Developmental stability of insecticide-resistant phenotypes in blowfly: a result of canalizing natural selection. Nature 325: 345–346.

    Article  CAS  Google Scholar 

  • Clarke, G. M., B. P. Oldroyd & P. Hunt, 1992. The genetic basis of developmental stability in Apis mellifera: Heterozygosity versus genetic balance. Evol. 46: 753–762.

    Article  Google Scholar 

  • De Marinis, F., 1959. The nature of asymmetry and variability in the double bar-eyeless drosophila. Genet. 44: 1101–1111.

    Google Scholar 

  • Dubrova, Yu. E., I. K. Dambueva, O. N. Kholod, V. D. Prokhorovskaya, E. I. Pushkina & M. L. Blank, 1991a. Influence of mother's heterozygosity on the variation of anthropometric traits in newborns. Genetika (USSR) 27: 2168–2176.

    Google Scholar 

  • Dubrova, Yu. E., I. K. Dambueva, O. N. Kholod, V. D. Prokhorovskaya, E. I. Pushkina & M. L. Blank, 1991b. Influence of heterozygosity on the variation of anthropometric traits in newborns. Genetika (USSR) 27: 2157–2167.

    Google Scholar 

  • Ferguson, M., 1986. Developmental stability of rainbow trout hybrids: Genomic coadaptation or heterozygosity. Evol. 40: 323–330.

    Article  Google Scholar 

  • Futuyma, D. J., 1986. Evolutionary biology. Sinauer associates, inc. Sunderland, Massachusetts.

    Google Scholar 

  • Golan, R., J. Ben-Ezzer & A. Szeinberg, 1977. Esterase D polymorphism in several population groups in Israel. Hum. Hered. 27: 298–304.

    CAS  PubMed  Google Scholar 

  • Goldschmidt, R. B., 1955. Theoretical Genetics. Cambridge University Press, Berkeley (L.A.).

    Google Scholar 

  • Graham, J. H. & J. D. Felley, 1985. Genomic coadaptation and developmental stability within introgressed populations of Enneacanthus gloriousus and E. obesus (Pisces, Centrarchidae). Evol. 39: 104–114.

    Article  Google Scholar 

  • Hartl, G. H., G. Lang, F. Klein & R. Willing, 1991. Relationship between allozymes, heterozygosity and morphological characters in red deer (Cervus Elaphus) and the influence of selective hunting on allele frequency distrubutions. Hered. 66: 343–350.

    Google Scholar 

  • Jantz, R. L. & R. S. Webb, 1980. Dermatoglyphic asymmetry as a measure of canalization. Ann. Hum. Biol. 7: 489–493.

    Article  CAS  PubMed  Google Scholar 

  • Jolicoeur, P., 1963. Bilateral symmetry and asymmetry in limb bones of Martes americana and man. Rev. Can. Biol., 22: 409–432.

    CAS  PubMed  Google Scholar 

  • Kartavtsev, Yu. F., 1990. Allozyme heterozygosity and morphological homeostatis in pink salmon Oncorhynchus gorbuscha (Pisces:Salmonidae). Genetika (USSR) 8: 1399–1407.

    Google Scholar 

  • Kat, P. W., 1982. The relationship between heterozygosity for enzyme loci and developmental homeostasis in peripheral populations of aquatic bivalves (Unionidae). The Amer. Natur. 119: 824–832.

    Article  Google Scholar 

  • Kertzman, H., 1992. Anthropological and biochemical variables among industrial workers, suffering from hypertension and coronary heart disease. MS Thesis, Tel Aviv University.

  • Kobyliansky, E., S. Micle, M. Goldschmidt-Natan, B. Arensburg & H. Natan, 1982. Jewish population of the world: genetic likeness and differences. Ann. Hum. Biol. 9: 1–34.

    Article  CAS  PubMed  Google Scholar 

  • Lahav, M. & A. Szeinberg, 1972. Rec-cell glutamic-pyruvic transminase polymorphism in several population groups in Israel. Hum. Hered. 22: 533–538.

    CAS  PubMed  Google Scholar 

  • Leary, R. F., F. W. Allendorf, K. L. Knudsen & G. H. Thorgaard, 1985. Heterozygosity and developmental stability in gynogenetic diploid and triploid rainbow trout. Hered. 54: 219–225.

    Google Scholar 

  • Leary, R. F. & F. W. Allendorf, 1989. Fluctuating asymmetry as an indicator of stress: implication for conservation biology. Trends. Ecol. Evol. 4: 213–217.

    Article  Google Scholar 

  • Lerner, I. M., 1954. Genetic homeostasis. Oliver & Boyd, London.

    Google Scholar 

  • Livshits, G. & E. Kobylianskyk, 1984. Biochemical heterozygosity as a predictor of developmental homeostasis in man. Ann. Hum. Genet. 48: 173–184.

    PubMed  CAS  Google Scholar 

  • Livshits, G. & E. Kobyliansky, 1985. Lerner's concept of developmental homeostasis and the problem of heterozygosity level in natural populations. Heredity 55: 341–353.

    PubMed  Google Scholar 

  • Livshits, G. & E. Kobyliansky, 1987. Dermatoglyphic traits as possible markers of developmental processes in humans. Am. J. Med. Genet. 26: 111–122.

    Article  CAS  PubMed  Google Scholar 

  • Livshits, G. & E. Kobyliansky, 1989. Study of genetic variance in the fluctuating asymmetry of anthropometrical traits. Ann. Hum. Biol. 16: 121–129.

    Article  CAS  PubMed  Google Scholar 

  • Livshits, G. & E. Kobyliansky, 1991. Fluctuating asymmetry as a possible measure of developmental homeostasis in humans. Hum. Biol. 63: 441–466.

    CAS  PubMed  Google Scholar 

  • Livshits, G., R. R. Sokal & E. Kobyliansky, 1991. Genetic affinities of Jewish populations. Am. J. Hum. Genet. 49: 131–146.

    CAS  PubMed  Google Scholar 

  • Livshits, G. & P. Smouse, 1993. Multivariate bilateral asymmetry in human adults. Hum. Biol. 65: 547–578.

    CAS  PubMed  Google Scholar 

  • Markow, T. A. & K. Wandler, 1986. Fluctuating dermatoglyphic asymmetry and the genetics of liability in schizophrenia. Psych. Res. 19: 323–328.

    Article  CAS  Google Scholar 

  • Markow, T. A. & J. P. Ricker, 1991. Developmental stability in hybrids between the sibling species pair, drosophila melanogaster and drosophila simulans. Genetica 84: 115–121.

    Article  CAS  PubMed  Google Scholar 

  • Mather, K., 1953. Genetical control of stability in development. Hered. 7: 297–336.

    Google Scholar 

  • Mellor, C. S., 1992. Dermatoglyphic evidence of fluctuating asymmetry in schizophrenia. Br. J. Psychiatry 160: 467–472.

    Article  CAS  PubMed  Google Scholar 

  • Mitton, J. B., 1978. Relationship between heterozygosity for enzyme loci and variation of morphological characters in natural populations. Nature 273: 661–662.

    Article  CAS  PubMed  Google Scholar 

  • Patterson, B. S. & J. L. Patton, 1990. Fluctuating asymmetry and allozymic heterozygosity among natural populations of pocket gophers (Thomomys Bottae). Biol. J. Linn. Soc. 40: 21–36.

    Google Scholar 

  • Quattro, J. M. & R. C. Vrijenhoek, 1989. Fitness differences among remnant populations of the endangered sonoran topminnow. Science 245: 976–978.

    CAS  PubMed  Google Scholar 

  • Rasmusson, M., 1960. Frequency of morphological deviations as a criterion of developmental stability. Hereditas 46: 511–536.

    Article  Google Scholar 

  • Reeve, E. C. R., 1960. Some genetic tests on asymmetry of sternopleural chaeta number in drosophila. Genet. Res. 1: 151–172.

    Article  Google Scholar 

  • Smouse, P. E., 1986. The fitness consequences of multiple-locus heterozygosity under the multiplication overdominance and inbreeding depression models. Evolution 40: 946–957.

    Article  Google Scholar 

  • Soule, M. E., 1979. Heterozygosity and developmental stability: Another look. Evol. 33: 396–401.

    Article  Google Scholar 

  • Soule, M. E., 1982. Allomeric variation. 1: The theory and some consequences. Am. Nat. 120: 751–764.

    Article  Google Scholar 

  • Soule, M. E. & J. Cuzin-Roudy, 1982. Allomeric variation. 2: Developmental instability of extreme phenotypes. Am. Nat. 120: 765–786.

    Article  Google Scholar 

  • Szeinberg, A., S. Pipano, Z. Rozansky & N. Ravia, 1971. Frequency of red cell adenosine deaminase phenotypes in several population groups in Israel. Hum. Hered. 21: 357–361.

    CAS  PubMed  Google Scholar 

  • Szeinberg, A. & S. Tomashevsky-Tamir, 1971. Red cell adenylate kinase and phosphoglucomutase polymorphisms in several population groups in Israel. Hum. Hered. 21: 289–296.

    Article  CAS  PubMed  Google Scholar 

  • Thoday, J. M., 1958. Homeostasis in a selection experiment. Hered. 12: 401–415.

    Google Scholar 

  • Vazquez, E., G. Blanco, J. A. Sanchez, E. Garcia & J. Rubio, 1988. Relationship between biochemical heterozygosity and morphological variability in a stock of Salmos salar L. Rev. Biol. Univ. Oviedo 6: 3–15.

    Google Scholar 

  • Vrijenhoek, R. C. & S. Lerman, 1982. Heterozygosity and developmental stability under sexual and asexual breeding systems. Evol. 36: 768–776.

    Article  Google Scholar 

  • Zakharov, V. M., 1981. Fluctuating asymmetry as an index of developmental homeostasis. Genetika (USSR) 13: 241–256.

    Google Scholar 

  • Zakharov, V. M., 1987. Asymmetry of Animals. Nauka, Moscow.

    Google Scholar 

  • Zink, R., M. Smith & J. L. Patton, 1985. Association between heterozygosity and morphological variance. J. Hered. 76: 415–420.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livshits, G., Smouse, P.E. Relationship between fluctuating asymmetry, morphological modality and heterozygosity in an elderly Israeli population. Genetica 89, 155–166 (1993). https://doi.org/10.1007/BF02424511

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02424511

Keywords

Navigation