Skip to main content
Log in

Spectral analysis of doppler flow velocity signals: Assessment of objectives, methods, and interpretation

  • Bioengineering Aspects of Noninvasive Diagnosis of Peripheral Vascular Diseases Symposium Presented at the 67th Annual FASEB Meeting in Chicago, April 13, 1983 Under the Sponsorship of the Biomedical Engineering Society
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Both pulsed and continuous wave Doppler ultrasound systems are finding increased application in the noninvasive assessment of peripheral and carotid arterial disease. An important aspect of such systems is the use of real-time Doppler spectral analysis. It has been shown that spectral analysis can enhance the diagnostic, accuracy and, in the case of carotid assessment, can potentially provide a means for quantification. This paper critically reviews the methods available for real-time analysis and relates the requirements and problems to the design of systems for routine clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, Z.M. A high-speed FFT processor.IEEE Trans. Commun. 26:690–696, 1978.

    Article  Google Scholar 

  2. Brennan, J.M., N.L. Rogers, and F.W. Ingle, Real time analysis of Doppler bloodflow signals.Proceedings of the IEEE Ultrasonics Symposium. 1982, pp. 373–374.

  3. Brinker, R.A., D.J. Landiss, and T.F. Croley. Detection of carotid artery bifurcation stenosis by Doppler ultrasound.J. Neurosurg. 29:143–148, 1968.

    PubMed  CAS  Google Scholar 

  4. Brown, P.M., K.W. Johnston, M. Kassam, and R.S.C. Cobbold. A critical study of ultrasound Doppler spectral analysis for detecting carotid disease.Ultrasound Med. Biol. 8:515–523, 1982.

    Article  PubMed  CAS  Google Scholar 

  5. Buss, D.D., D.R. Collins, W.H. Bailey, and C.R. Reeves. Transversal filtering using charge-transfer devices.IEEE J. Solid-State Circuits 8:138–146, 1973.

    Article  Google Scholar 

  6. Childers, D., editorModern Spectrum Analysis, New York: IEEE Press, 1978.

    Google Scholar 

  7. Cobbold, R.S.C., P. Veltink, and K.W. Johnston. Influence of beam profile and degree of insonation on the CW Doppler ultrasound spectrum and mean velocity.IEEE Trans. Sonics and Ultrason 30:364–370, 1983.

    Google Scholar 

  8. Coghlan, B.A., M.G. Taylor, and D.H. King, On-line display of Doppler-shift spectra by a new time compression analyser. InCardiovascular Applications of Ultrasound, edited by R. S. Reneman. Amsterdam: North-Holland, 1974, pp. 55–65.

    Google Scholar 

  9. Douville, Y., J.W. Arenson, K.W. Johnston, R.S.C. Cobbold, and M. Kassam Critical evaluation of continuous wave Doppler probes for carotid studies.J. Clin. Ultrasound 11:83–90, 1983.

    PubMed  CAS  Google Scholar 

  10. Douville, Y., K.W. Johnston, M. Kassam, P. Zuech, R.S.C. Cobbold, and T. Jares An in vitro model and its application in the study of carotid Doppler spectral broadening.Ultrasound Med Biol. 9:347–356, 1983.

    Article  PubMed  CAS  Google Scholar 

  11. Eversole, W.L., D.J. Mayer, P.W. Bosshart, M. de Wit, R.C. Hewes, and D.D. Buss, A completely integrated thirty-two-point chirp z transform.IEEE J. Solid-State Circuits 13:822–831, 1978.

    Article  Google Scholar 

  12. Flax, S.W., J.G. Webster, and S.J. Updike. Statistical evaluation of the Doppler ultrasonic blood flowmeter. InBiomedical Sciences Instrumentation, New York: Plenum Press, 1970, pp. 201–222.

    Google Scholar 

  13. Johnston, K.W., M. Kassam, J. Koers, R.S.C. Cobbold, and D. MacHattie. Comparative study of four methods for quantifying Doppler ultrasound waveforms from the femoral artery.Ultrasound Med. Biol. 10:1–12, 1984.

    Article  PubMed  CAS  Google Scholar 

  14. Johnston, K.W., P.M. Brown, and M. Kassam. Problems of carotid Doppler scanning which can be overcome by using frequency analysisStroke 13:660–666, 1982.

    PubMed  CAS  Google Scholar 

  15. Johnston, K.W., M. Kassam, and R.S.C. Cobbold. Online identification of Doppler ultrasound waveforms.Med. Biol. Eng. Comput. 20:336–342, 1982.

    PubMed  CAS  Google Scholar 

  16. Johnston, K.W., B.C. Maruzzo, and R.S.C. Cobbold. Doppler methods for quantitative measurement and localization of peripheral arterial occlusive disease by analysis of the blood flow velocity waveform.Ultrasound Med. Biol. 4:209–223, 1978.

    Article  PubMed  CAS  Google Scholar 

  17. Kaneko, Z., J. Shiraishi, H. Omizo, K. Kato, M. Motomiya, and T. Okumura. An analyzing method of ultrasonic blood rheograph with sonograph.Digest, 6th International Conference Med. Electron. Biolog. Eng. Tokyo, Japan, 1965 pp. 286–287.

  18. Kassam, M., R.S.C. Cobbold, P. Zuech, and K.W. Johnston. Quantification of carotid arterial disease by Doppler ultrasound.Proceedings of the IEEE Ultrasonics Symposium 1982, pp. 675–680.

  19. Kay, S.M. and S.L. Marple. Spectrum analysis—a modern perspective.Proc. IEEE 69:1380–1419, 1981.

    Google Scholar 

  20. Light, L.H. A recording spectrograph, for analysing Doppler blood velocity signals (particularly from aortic flow) in real time.J. Physiol. 207:42–44, 1970.

    Google Scholar 

  21. Pettengill, R.C., P.W. Bosshart, M. de Wit, and C.R. Hewes. A monolithic 512 point chirp z transform processor.Digest, IEEE Solid-State Circuits Conference, Philadelphia, Pennsylvania 1979, pp. 68–69.

  22. Risk, R.J. Efficient hard-wired digital fast-Fourier-transform processor.Electron. Lett. 13:458–459 1977.

    Google Scholar 

  23. Schirm, L. Packing a signal processor onto a single digital board.Electronics 52:109–115, 1979.

    Google Scholar 

  24. Shung, K.K., R.A. Sigelmann, and J.M. Reid, Seattering of ultrasound by blood.IEEE Trans. Biomed. Eng. 23:460–467, 1976.

    PubMed  CAS  Google Scholar 

  25. Stevens, A. and C. Roberts. Online signal processing of CW Doppler shifted ultrasound.Digest, 11th International Conference Med. Biol. Eng. 1976, pp. 160–161.

  26. Wardrop, B. and E. Bull. A discrete Fourier transform, processor using charge-coupled devices.Marconi Rev. 40:1–41, 1977.

    Google Scholar 

  27. Yao, S.T. and T.N. Needham. Frequency analysis of Doppler-shifted bloodflow signals by a bandpass filter: Preliminary report.Biomed. Eng. 5:438–442, 1970.

    PubMed  CAS  Google Scholar 

  28. Zuech, P., R.S.C. Cobbold, M. Kassam, and K.W. Johnston, Application of real-time spectral analysis for Doppler ultrasound assessment of vascular disease.Ist Acoustics Speech and Signal Processing Society Workshop on Spectral Estimation. Hamilton, Ontario 2:7.5.1–7, 1981.

    Google Scholar 

  29. Zuech, P., R.S.C. Cobbold, M. Kassam, and K.W. Johnston. On the application of CCD transversal filters for real-time spectral analysis of Doppler ultrasound arterial signals.Ultrasound Med. Biol. 8:57–69, 1982.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuech, P.E., Cobbold, R.S.C., Johnston, K.W. et al. Spectral analysis of doppler flow velocity signals: Assessment of objectives, methods, and interpretation. Ann Biomed Eng 12, 103–116 (1984). https://doi.org/10.1007/BF02410294

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02410294

Keywords

Navigation