Skip to main content
Log in

Evolutionary dynamics for bimatrix games: A Hamiltonian system?

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We review some properties of the evolutionary dynamics for asymmetric conflicts, give a simplified approach to them, and present some new results on the stability and bifurcations occurring in these conservative systems. In particular, we compare their dynamics to those of Hamiltonian systems

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [AL] E. Akin, V. Losert, Evolutionary dynamics of zero-sum games. J. Math. Biology20 (1984) 231–258

    Article  MathSciNet  MATH  Google Scholar 

  • [A1] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, 1989

  • [A2] V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer, 1983.

  • [B1] H. W. Broer, Bifurcation of Singularities in Volume Preserving Vector Fields, Thesis, Rijksuniversiteit Groningen (1979)

  • [B2] H. W. Broer, In: Dynamical Systems and Turbulence, LNM, vol. 898, Springer, 1981, pp. 54–74 and 75–89

  • [BHT] H. W. Broer, G. B. Huitema, F. Takens, Unfoldings of quasiperiodic tori, Memoirs Amer. Math. Soc., Vol. 83, Nr. 421 (1990) 1–77

    MathSciNet  Google Scholar 

  • [EA] I. Eshel, E. Akin, Coevolutionary instability of mixed Nash solutions, J. Math. Biology18 (1983) 123–133

    MathSciNet  MATH  Google Scholar 

  • [H] J. Hofbauer, A canonical discrete time dynamics for bimatrix games, Preprint, Vienna 1994

  • [HS] J. Hofbauer, K. Sigmund, The Theory of Evolution and Dynamical Systems, Cambridge University Press, 1988

  • [MS] J. Maynard Smith, Evolution and the Theory of Games, Cambridge University Press, 1982

  • [M] J. Moser, Stable and Random Motions in Dynamical Systems, Ann. Math. Studies 77, Princeton University Press, 1973

  • [Pe] A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras, Vol. I, Birkhäuser, 1990

  • [P1] M. Plank, Hamiltonian structures forn dimensional Lotka-Volterra equations. J. Math. Physics36 (1995) 3520–3534

    Article  MATH  MathSciNet  Google Scholar 

  • [SZ] L. Samuelson, J. Zhang, Evolutionary stability in asymmetric games. J. Economic Theory57 (1992) 363–391

    Article  MathSciNet  MATH  Google Scholar 

  • [SS] P. Schuster, K. Sigmund, Coyness, philandering and stable strategies, Animal Behaviour29 (1981) 186–192

    Article  Google Scholar 

  • [SSHW] P. Schuster, K. Sigmund, J. Hofbauer, R. Wolff, Selfregulation of behaviour in animal societies. Part II: Games between two populations without selfinteraction, Biol. Cybern.40 (1981) 9–15

    Article  MathSciNet  MATH  Google Scholar 

  • [S1] R. Selten, A note on evolutionarily stable strategies in asymmetric animal conflicts, J. Theor. Biol.84 (1980) 93–101

    Article  MathSciNet  Google Scholar 

  • [S2] R. Selten, Anticipatory learning in two-person games, R. Selten (ed.): Game Equilibrium Models I. Evolution and Game Dynamics, Springer, 1991, pp. 98–154

  • [T] F. Takens, Singularities of vector fields, Publ. Math. IHES43 (1974) 48–100

    Google Scholar 

  • [Z] E. C. Zeeman, Population dynamics from game theory, Global Theory of Dynamical Systems. Proc. Conf. Northwestern Univ. 1979, Lecture Notes in Mathematics, vol. 819, Springer, 1980, pp. 472–497

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofbauer, J. Evolutionary dynamics for bimatrix games: A Hamiltonian system?. J. Math. Biology 34, 675–688 (1996). https://doi.org/10.1007/BF02409754

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02409754

Key words

Navigation