Skip to main content
Log in

The role of motilin and cisapride in the enteric nervous system of the lower esophageal sphincter in humans

  • Original Articles
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

To assess the pharmacophysiological significance of the enteric nervous system and the responses of the human lower esophageal sphincter (LES) to motilin and cisapride, the mechanical responses of esophgeal tissues from six patients with esophageal cancer and seven patients with gastric cancer were investigated. Circular muscle reactions were recorded to evaluate the in vitro esophageal responses to electrical field stimulation (EFS), motilin, and cisapride, evoking the adrenergic and cholinergic nerves before and after treatment with various autonomic nerve blockers. The findings of this study revealed that: cholinergic nerves are mainly involved in the regulation of enteric nerves in the steady state, while nonadrenergic non-cholinergic (NANC) inhibitory nerves also exist; motilin may act both via nerves and also directly on the LES smooth muscle; and cisapride releases acetylcholine from the end of the postganglionic fiber of the cholinergic nerve in human LES thereby inducing contraction of the LES. These results suggest that cholinergic and NANC inhibitory nerves play an important role in human LES, and that motilin and cisapride is clinically useful for improving the impaired LES of patients with gastroesophageal reflux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Q, Castell JA, Castell DO (1994) Manometric determination of esophageal length. Am J Gastroenterol 89:722–725.

    CAS  PubMed  Google Scholar 

  2. Goyal RK, Paterson WG (1989) Esophageal motility. In: Schultz SG, Wood JD, Rauner BB (eds). Handbook of physiology, section 6: the gastrointestinal system. American Physiological Society, Bethesda MD, pp 865–908.

    Google Scholar 

  3. Pasricha PJ, Rarich WJ, Kalloo AN (1993) Effects of intrasphincteric botulinum toxin on the lower esophageal sphincter in piglets. Gastroenterology 105:1045–1049.

    CAS  PubMed  Google Scholar 

  4. Biancani P, Walsh JH, Behar J (1984) Vasoactive intestinal polypeptide: a neurotransmitter for lower esophageal sphincter relaxation. J. Clin Invest 73:963–967.

    CAS  PubMed  Google Scholar 

  5. Tomita R, Munakata K, Kurosu Y (1994) Peptidergic nerves in Hirschsprung's diseases and its allied disorders. Eur J Pediatr Surg 4:346–351

    CAS  PubMed  Google Scholar 

  6. Reynolds JC, Dukehart MR, Ouyang A (1986) Interactions of bombesin and Substance P at the feline lower esophageal sphincter. J Clin Invest 77:436–440.

    CAS  PubMed  Google Scholar 

  7. Parkman HP, Reynolds JC (1990) Somatostatin selectively inhibits excitory contractile pathways of the feline lower esophageal sphincter. Regul Peptides 27:325–334

    CAS  Google Scholar 

  8. Cohen S, Lipschutj W (1971) Hormonal regulation of human lower esophageal sphincter competence, interaction of gastrin and secretin. J Clin Invest 50:449–454

    CAS  PubMed  Google Scholar 

  9. Wright LF, Slaughter RL, Gibson RG, Hirschowitz BI (1975) Correlation of lower esophageal sphincter pressure and serum gastrin level in man. Dig Dis 20:603–606.

    CAS  Google Scholar 

  10. Henderson JM, Ligard G, Obsborne DH (1978) Lower esophageal sphincter response to gastrin-pharmacological or physiological? Gut 19:99–102.

    CAS  PubMed  Google Scholar 

  11. Itoh Z (1978) Changes in plasma motilin concentration and gastrointestinal contractile activity in the conscious dog. Ann J Dig Dis 23:926–935.

    Google Scholar 

  12. Tomita R, Aoki N, Kurosu Y (1995) Effects of cisapride on interdigestive phase III migrating motor complexes and gastrointestinal hormones after subtotal gastrectomy for gastric cancer. Adv Ther 12:44–53.

    Google Scholar 

  13. Tomita R, Aoki N, Munakata K, Tanjoh K, Kurosu Y (1995) Effects of cisapride on interdigestive jejunal phase III motility and kinetics of gastrointestinal hormones after total gastrectomy for gastric cancer. Adv Ther 12:73–82.

    Google Scholar 

  14. Tomita R, Kurosu Y, Munakata K, Aoki N, Tanjoh K (1993) Migrating motor complex and gastrointestinal hormones in human. Nihon Univ J Med 35:287–293.

    Google Scholar 

  15. Fox-Threlkeld JET (1993) Motility and regulatory peptides. In: Kumar D, Wingate D (eds) Gastrointestinal motility, 2nd edn, Churchill Livingstone, New York, pp 78–92.

    Google Scholar 

  16. Strunz U, Domschke W, Mitznegg P (1975) Analysis of the motor effects of 13-norleucine motilin on rabbit, guinea pig, rat, and human alimentary tract in vitro. Gastroenterology 68:1485–1489

    CAS  PubMed  Google Scholar 

  17. Louie DS, Owyang C (1988) Motilin receptors on isolated gastric smoth muscle cells. Am J Physiol 254:G210-G215.

    CAS  PubMed  Google Scholar 

  18. Perdikis G, Wilson P, Hinder RA, Redomond EJ, Wetscher GJ, Saeki S, Adrian TE (1994) Gastrointestinal reflux disease is associated with hormone abnormalities. Am J Surg 167:186–192.

    Article  CAS  PubMed  Google Scholar 

  19. Zaninotto G, DeMeester TR, Schwizer W, Johannsson KE, Cheng SC (1988) The lower esophageal sphincter in health and disease. Am J Surg 155:104–110.

    CAS  PubMed  Google Scholar 

  20. Katschinisky M, Wank U Ducree M, Schirra JA, Arnold R (1995) Cisapride stimulates human esophageal motility. Digestion 56:153–158.

    Google Scholar 

  21. Taniyama K, Nakayama S, Takeda K, Natsuyama S, (1991) Cisapride stimulates motility of the intestine via the 5-hydroxytryptamine receptors. J Pharmacol Exp Ther 258:1098–1104.

    CAS  PubMed  Google Scholar 

  22. Pennathur A, Cioppi M, Fayad JB, Alex GL (1993) Erythromycin, motilin, and esophagus. Surgery 114:295–299.

    CAS  PubMed  Google Scholar 

  23. Christensen J (1987) Motor functions of the pharynx and esophagus. In: Johnson LR (ed) Physiology of the gastrointestinal tract Raven, New York, pp 595–612.

    Google Scholar 

  24. Holloway R, Blank E, Takahashi I, Dodds WJ, Layman RD (1985) Motilin: a mechanism incorporating the opossum lower esophageal sphincter into the migrating motor complex. Gastroenterology 89:507–515.

    CAS  PubMed  Google Scholar 

  25. Lee KY (1988) Effect of rabbit antimotilin serum on myoelectric activity and plasma motilin concentration in fasting dog. Am J Physiol 245:547–553

    Google Scholar 

  26. Itoh Z, Aizawa I, Honda R, Hiwatsshi K, Kouch E (1978) Control of lower esophageal sphincter contractile activity by motilin in conscious dog. Dig Dis Sci 23:341–345.

    CAS  Google Scholar 

  27. Yamato S, Spechler SJ, Goyal PK (1992) Role of nitric oxide in esophageal peristalsis in the opossum. Gastroenterology 103: 197–204.

    CAS  PubMed  Google Scholar 

  28. Preiksaitis HG, Tremblay L, Diamant NE (1994) Nitric oxide mediates inhibitory nerve effects in human esophagus and lower esophageal sphincter. Dig Dis Sci 39:770–775.

    Article  CAS  PubMed  Google Scholar 

  29. Tomita R, Munakata K, Kurosu Y (1995) A role of nitric oxide in Hirschsprung's disease. J Pediatr Surg 30:437–440.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of this work was presented at the 15th Annual Conference of Gut Hormones held on July 21, 1994, in Shizuoka, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomita, R., Tanjoh, K. & Munakata, K. The role of motilin and cisapride in the enteric nervous system of the lower esophageal sphincter in humans. Surg Today 27, 985–992 (1997). https://doi.org/10.1007/BF02385776

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02385776

Key words

Navigation