Skip to main content
Log in

Computer simulation of the mechanically-assisted failing canine circulation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A model of the cardiovascular system is presented. The model includes representations of the left and right ventricles, a nonlinear multielement model of the aorta and its main branches, and lumped models of the systemic veins and the pulmonary circulation. A simulation of the intra-aortic balloon pump and representations of physiological compensatory mechanisms are also incorporated in the model. Parameters of the left ventricular model were set to simulate either the normal or failing canine circulation. Pressure and flow waveforms throughout the circulation as well as ventricular pressure and volume were calculated for the normal, failing, and assisted failing circulation. Cardiac oxygen supply and consumption were calculated from the model. They were used as direct indices of cardiac energy supply and utilization to assess the effects of cardiac assistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A m :

vessel cross-sectional area atm mmHg

E :

ventricular pressure-volume ratio

E max :

maximum value ofE

E n :

normalizedE function

E w :

vessel wall elastance

P :

blood pressure

P AV0 :

unperturbed mean aortic root pressure

P AV :

mean aortic root pressure

P im :

intramyocardial pressure

P LV :

left ventricular pressure

P VL :

pressure across aortic valve

P V :

systemic venous blood pressure

PVA :

pressure-volume area

P W :

transmural pressure

Q :

flow

Q LV :

left ventricular flow

Q r :

net flow into a vessel segment

Q VL :

flow into aortic valve leaflets

r b :

radius of a balloon segment

r n :

radius of a vessel segment

TCF :

total coronary flow per beat

t ED :

time of end diastole

t ES :

time of end systole

t max :

time whenE equalsE max

t n :

normalized time

V ED :

end diastolic ventricular pressure

V Oa :

oxygen availability per beat

V Oc :

oxygen consumption per beat

V s :

venous volume shift

V VL :

aortic valve volume

η:

blood viscosity

ρ:

blood density

τ:

time constant

References

  1. Altman, P.L.; Dittmer, D.S. Respiration and circulation Bethesda, Maryland: Federation of American Societies for Experimental Biology; 1971.

    Google Scholar 

  2. Appleby, T. Analog modeling of the coronary circulation to predict left ventricular myocardial perfusion dynamics. M.S. thesis; Drexel University; Philadelphia; 1986.

    Google Scholar 

  3. Atabek, H.B. Blood flow and pulse propagation in arteries. In: Patel, D.J.; Vaishnav, R.N., eds. Basic hemodynamics and its role in disease processes. Baltimore; Baltimore University Park Press; 1980: p. 344.

    Google Scholar 

  4. Attinger, E.O.; Sagawara, H.; Navarro, A.; Riccetto, A.; Martin, R. Pressure-flow relations in dog arteries. Cir. Res. 19:230; 1966.

    CAS  Google Scholar 

  5. Barnea, O. Cardiovascular dynamics and the intra-aortic balloon pump: optimization based on cardiac oxygen balance. Ph.D. Dissertation; Drexel University; Philadelphia; 1987.

    Google Scholar 

  6. Bergel, D.H. Arterial viscoelasticity. In: Attinger, E.O., ed. Pulsatile blood flow. New York: McGraw-Hill; 1964.

    Google Scholar 

  7. Beyar, R.; Seideman, S. A computer study of the left ventricular performance based on fiber structure, sarcomere dynamics, and transmural electrical propagation velocity. Circ. Res. 55:358; 1984.

    CAS  PubMed  Google Scholar 

  8. Diamond, G.; Forrester, J.S.; Hargis, J.; Parmley, W.W.; Danzig, R.; Swan, H.J.C. Diastolic pressure-volume relationship in the canine left ventricle. Circ. Res. 19:267; 1971.

    Google Scholar 

  9. Feola, M.; Haiderer, O.; Kennedy, J.H. Intra-aortic balloon pumping at different levels of experimental acute left ventricular failure. Chest 59:68–76; 1971.

    CAS  PubMed  Google Scholar 

  10. Finkelstein, S.M.; Cohn, J.N.; Collins, V.R.; Carlyle, P.F.; Shelley, W.J. Vascular hemodynamic impedance in congestive heart failure. Am. J. Cardiol. 55:423–427; 1985.

    Article  CAS  PubMed  Google Scholar 

  11. Greene, A.S.; Shoukas, A.A. Changes in canine function and venous return curves by the carotid baroreflex. Am. J. Physiol. 251:H288; 1986.

    CAS  PubMed  Google Scholar 

  12. He, P. Optimization of cardiac assist devices: theoretical and experimental studies of intra-aortic balloon pumping. Ph.D. Thesis; Drexel University; Philadelphia; 1984.

    Google Scholar 

  13. He, P.; Dubin, S.E.; Moore, T.W.; Jaron, D. Guidelines for optimal control of intra-aortic balloon pumping: experimental studies. ASAIO 7(4):172–179; 1984.

    Google Scholar 

  14. Jaron, D.; Moore, T.W.; He, P. Theoretical considerations regarding the optimization of cardiac assistance by intra-aortic balloon pumping. IEEE Trans. Biom. Eng. 30:177–186; 1983.

    CAS  Google Scholar 

  15. Jelinek, J. Counterpulsation: hemodynamics and design analysis of counterpulsation systems. Adv. Cardiovasc. Physics 5:72–101; 1983.

    Google Scholar 

  16. Jelinek, J. Hemodynamics of counterpulsation: the study of a lumped-parameter computer model. J. Biomechanics 5:511; 1972.

    CAS  Google Scholar 

  17. Kass, D.A.; Maughan, W.L. From ‘Emax’ to pressure-volume relations: a broader view. Circulation 77:1203; 1988.

    CAS  PubMed  Google Scholar 

  18. Kuklinski, W.S.; Jaron, D.; Ohley, W.J.; Greenall Jr., R.K. The intra-aortic balloon pump: a nonlinear digital computer model. Transactions of the ASME 106:220; 1980.

    Google Scholar 

  19. Laird, J.D.; Madras, P.N.; Jones, R.T.; Kantrowitz, A.R.; Kothari, M.L.; Buckley, M.J.; Austen, W.G. Theoretical and experimental analysis of the intra-aortic balloon pump. Trans. ASAIO 14:338; 1968.

    CAS  Google Scholar 

  20. Latson, T.W.; Hunter, W.C.; Burkhoff, D.; Sagawa, K. Time sequential prediction of ventricular-vascular interactions. Am. J. Physiol. 251:H1341; 1986.

    CAS  PubMed  Google Scholar 

  21. Leaning, M.S.; Pullen, H.E.; Carson, E.R.; Finkelstein, L. Modelling a complex biological system: the human cardiovascular system. Trans. Inst. MC5, No. 2, Apr–Jun; 1983.

  22. Lefemine, A.A.; Low; Cohen, M.L.; Lunzer, S.; Harken, D.E. Assisted circulation. III. The effect of synchronized arterial counterpulsation on myocardial oxygen consumption and coronary flow. Am. Heart J. 64:789; 1962.

    CAS  PubMed  Google Scholar 

  23. Ling, S.C.; Atabek, H.B.; Letzing, W.G.; Patel, D.J. Nonlinear analysis of aortic flow in living dogs. Circ. Res. 33:198; 1973.

    CAS  PubMed  Google Scholar 

  24. Maughan, W.L.; Shoukas, A.A.; Sagawa, K.; Weisfeldt, M.L. Instantaneous pressure-volume relationship of the canine right ventricle. Circ. Res. 44:309; 1979.

    CAS  PubMed  Google Scholar 

  25. McDonald, D.A. Blood flow in arteries. London: Edward Arnold; 1974.

    Google Scholar 

  26. Milnor, W.R. Hemodynamics. Baltimore: Williams & Wilkins; 1982.

    Google Scholar 

  27. Murgo, J.P.; Westerhof, N. Input impedance of the pulmonary arterial system in normal man. Circ. Res. 54:666, 1984.

    CAS  PubMed  Google Scholar 

  28. Neiderer, P.; Schilt, W. Experimental and theoretical modelling of intra-aortic balloon pump operation. Med. & Biol. Eng. & Comput. 26:167–174; 1988.

    Google Scholar 

  29. Nerz, A.R.; Myerowitz, P.D.; Blackshear Jr., P.L. A simulation of the dynamics of counterpulsation. J. Biomech. Eng. 101:105; 1980.

    Google Scholar 

  30. Nichols, W.W.; McDonald, D.A. Wave velocity in the proximal aorta. Med. Biol. Eng. 10:327; 1972.

    CAS  PubMed  Google Scholar 

  31. Nozawa, T.; Yasumura, Y.; Futaki, S.; Tanaka, N.; Igarashi, Y.; Goto, Y.; Suga, H. Relation between oxygen consumption and pressure-volume area ofin situ dog heart. Am. J. Physiol. 253 (Heart Circ. Physiol. 22):H31-H40; 1987.

    CAS  PubMed  Google Scholar 

  32. Noordergraaf, A. Circulatory system dynamics. New York: Academic Press; 1978: pp. 125–127.

    Google Scholar 

  33. Permutt, S.; Bromberger-Barnea, B.; Bane, H.N. Alveolar pressure, pulmonary venous pressure and the vascular waterfall. Med. Thorac. 19:239–260; 1962.

    CAS  PubMed  Google Scholar 

  34. Puri, N.N.; Li, J.K.-J.; Fich, S.; Welkowitz, W. Control system for circulatory assist devices: determination of suitable control variables. Trans. Am. Soc. Art. Intern. Organs 28:127; 1982.

    CAS  Google Scholar 

  35. Shroff, S.G.; Nanicki, J.S.; Weber, K.T. Evidence and quantitation of left ventricular systolic resistance. Am. J. Physiol. 249:H358; 1985.

    CAS  PubMed  Google Scholar 

  36. Shroff, S.G.; Janicki, J.S.; Weber, K.T. Left ventricular systolic dynamics in terms of its chamber mechanical properties. Am. J. Physiol. 245:H110; 1983.

    CAS  PubMed  Google Scholar 

  37. Suga, H.; Sagawa, K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ. Res. 35:117; 1974.

    CAS  PubMed  Google Scholar 

  38. Suga, H.; Yasamura, Y.; Nozawa, T.; Futaki, S.; Igarashi, Y.; Goto, Y. Prospective prediction of O2 consumpton from pressure-volume area in dog hearts. Am. J. Physiol. 252:H1258-H1264; 1987.

    CAS  PubMed  Google Scholar 

  39. Sunagawa, K.; Maughan, W.L.; Sagawa, K. Effect of regional ischemia on the left ventricular endsystolic pressure-volume relationship of isolated canine hearts. Circ. Res. 52:170; 1983.

    CAS  PubMed  Google Scholar 

  40. Tanaka, T.; Arakawa, M.; Suzuki, T.; Gotoh, M.; Miyamoto, H.; Hirakawa, S. Compliance of human pulmonary “venous” system estimated from pulmonary artery wedge pressure tracings. Japanese Circulation Journal 50;127: 1986.

    CAS  PubMed  Google Scholar 

  41. Thurbikar, M.; Piepgrass, W.C.; Bosher, L.P.; Nolan, S.P. The elastic modulus of canine aortic valve leafletsin vivo andin vitro. Circ. Res. 47:792; 1980.

    Google Scholar 

  42. Weber, K.T.; Janicki, J.S. The metabolic demand and oxygen supply of the heart: physiologic and clinical considerations. Am. J. Cardiol. 44:722; 1979.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by Grant No. EET-8620120 from the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnea, O., Moore, T.W. & Jaron, D. Computer simulation of the mechanically-assisted failing canine circulation. Ann Biomed Eng 18, 263–283 (1990). https://doi.org/10.1007/BF02368442

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368442

Keywords

Navigation