Skip to main content
Log in

Modeling the transmural stress distribution during healing of bioresorbable vascular prostheses

Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Little attention has been given to the stresses within the wall of bioresorbable vascular prostheses and how they might affect the resorption process. We modeled the graft “complex” (inner tissue capsule, residual graft, and outer tissue capsule) as a three-layered compound tube under internal pressure. Using this biomechanical model, we studied the effects of alterations in the geometry (i. e., radius and thickness) and mechanical properties of each stratum on the overall transmural stress distribution. Hypothetical simulations were performed to investigate the possible-sequence of and alterations in the radial and circumferential stresses during the resorption process. Our results suggest that early in the resorption phase, the inner tissue capsule is subjected to compressive hoop stresses and concentrated, largemagnitude compressive radial stresses. This distribution gives way to the more typical distribution for a thick-walled tube when equilibration (i.e., complete resorption) is approached. The prediction of the compressive stresses in the pseudo-intima during early resorption parallels findings of an elevated mitotic index in that region at that time. This leads to a new hypothesis, namely, that compressive stresses, both in-plane and out-of-plane with respect to the regenerated vascular cells, participate in the resorption process of bioresorbable vascular grafts by modulating elevated cellular proliferative activity and may play an important role in other aspects of vascular cell biology. Results of recent experimentation support this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Acevedo, A. D., S. S. Bowser, M. E. Gerritsen, and R. Bizios. Morphological and proliferative response of endothelial cells to hydrostatic pressure: Role of fibroblast growth factor.J. Cell. Physiol. 157:603–614, 1993.

    Article  CAS  PubMed  Google Scholar 

  2. Chandran, K. B. Cardiovascular Biomechanics. New York: New York University Press, 1992, 544 pp.

    Google Scholar 

  3. Davies, P., J. C. Forbes-Dewey, S. Bussolari, E. Gordon, and J. M. A. Gimbrone. Influence of hemodynamic forces on vascular endothelial function.J. Clin. Invest. 1973; 1121–1129, 1984.

    Google Scholar 

  4. Fung, Y. C. Biomechanics: Motion, Flow, Stress and Growth, New York: Springer-Verlag, 1990, 569 pp.

    Google Scholar 

  5. Gorfien, S. F., F. K. Winston, L. E. Thibault, and E. J. Macarak. Effects of biaxial deformation on pulmonary artery endothelial cells.J. Cell. Physiol. 139:492–500, 1989.

    Article  CAS  PubMed  Google Scholar 

  6. Greisler, H. P., Arterial regeneration over absorbable prostheses.Arch. Surg. 117:1425–1431, 1982.

    CAS  PubMed  Google Scholar 

  7. Greisler, H. P., D. U. Kim, C. Genoglio, J. B. Price, and A. B. Vorhees. Arterial regenerative activity after prosthetic implantation.Arch. Surg. 120:315–323, 1985.

    CAS  PubMed  Google Scholar 

  8. Greisler, H. P., J. Ellinger, T. H. Schwarz, J. Golan, R. M. Raymond, and D. U. Kim. Arterial regeneration over polydioxanone prostheses in the rabbit.Arch. Surg. 122:715–721, 1987.

    CAS  PubMed  Google Scholar 

  9. Greisler, H. P., E. D. Endean, J. J. Klosak, J. Ellinger, J. W. Dennis, K. Buttle, and D. U. Kim. Polyglactin 910/polydioxanone biocomponent totally resorbable vascular prostheses.J. Vasc. Surg. 7:697–705, 1988a.

    Article  CAS  PubMed  Google Scholar 

  10. Greisler, H. P., J. W. Dennis, E. D. Endean, and D. U. Kim, Derivation of neointima of vascular grafts.Circulation (Suppl. I) 78:I6-I12, 1988b.

    CAS  PubMed  Google Scholar 

  11. Greisler, H. P., K. A. Joyce, D. U. Kim, S.M. Pham, S. A. Berceli, and H. S. Borovetz. Spatial and temporal changes in compliance following implantation of bioresorbable vascular grafts.J. Biomed. Mat. Res. 26:1449–1461, 1992.

    CAS  Google Scholar 

  12. Greisler, H. P., D. Petsikas, T. M., Lam, N. Patel, J. Ellinger, E. Cabusao, C. W. Tattersall, and D. U. Kim. Kinetics of cell proliferation as a function of vascular graft material.J. Biomed. Mat. Res. 27:955–961, 1993.

    CAS  Google Scholar 

  13. Hokanson, D. E., and D. E. Strandness. Stress-strain characteristics of various arterial grafts.Surg. Gynecol. Obstet. 127:57–60, 1968.

    CAS  PubMed  Google Scholar 

  14. Iba T., and B. E. Sumpio. Morphological response of human endothelial cells subjected to cyclic strainin vitro.Microvasc. Res. 42:245–254, 1991.

    Article  CAS  PubMed  Google Scholar 

  15. Ives, C. L., S. G. Eskin, and L. V. McIntire. Mechanical effects on endothelial cell morphology:In vitro assessment.In-Vitro Cell Dev. Biol. 22:500–507, 1986.

    CAS  PubMed  Google Scholar 

  16. Pham, S., S. J. Durham, R. Johnson, D. Showalter, E. D. Endean, D. A. Vorp, D. U. Kim, H. S. Borovetz, and H. P. Greisler. Compliance changes in bioresorbable vascular prostheses following implantation.Surg. Forum 39: 330–332, 1988.

    Google Scholar 

  17. Richardson, P. D.. Mechanical factors in bioresorbable grafts.Bull. NY Acad. Med. 64:132–143, 1988.

    CAS  Google Scholar 

  18. Richardson, P. D., A. Parhizgar, H. F. Sasken, T.-H. Chiu, T. Aebischer, L. A. Trudell, and P. M. Galletti. Tissue characterization by micromechanical testing of growths around bioresorbable implants. In: Progress in Artificial Organs—1985, edited by Y. Nosé, C. Kjellstrand, and P. Ivanovich. Cleveland, OH: ISAO Press, 1986, pp. 1015–1019.

    Google Scholar 

  19. Sumpio, B. E.. Hemodynamic forces and the biology of the endothelium: Signal transduction pathways in endothelial cells subjected to physical forcesin vitro.J. Vasc. Surg. 13:744–746, 1991.

    CAS  PubMed  Google Scholar 

  20. Sumpio, B. E., and A. J. Banes. Response of porcine aortic smooth muscle cells to cyclic tensional deformation in culture.J. Surg. Res. 44:696–701, 1988.

    Article  CAS  PubMed  Google Scholar 

  21. Sumpio, B. E., A. J. Banes, L. G. Levin, and G. J. Johnson. Mechanical stress stimulates aortic endothelial cells to proliferate.J. Vasc. Surg. 6:252–256, 1987.

    CAS  PubMed  Google Scholar 

  22. Sumpio, B. E., M. D. Widmann, J. Ricotta, M. A. Awolesi, and M. Watase. Increased ambient pressure stimulates proliferation and morphologic changes in cultured endothelial cells.J. Cell. Physiol. 158:133–139, 1994.

    Article  CAS  PubMed  Google Scholar 

  23. Tokunaga, O., J.-L. Fan, and T. Watanabe. Atherosclerosis and endothelium. Part II: Properties of aortic endothelial and smooth muscle cells cultured at various ambient pressures.Jap. Soc. Pathol. 39:356–362, 1989.

    CAS  Google Scholar 

  24. Vawter, D. L.. Poisson's ratio and incompressibility.J. Biomech. Eng. 105:194–195, 1983.

    CAS  PubMed  Google Scholar 

  25. Von Maltzahn, W.-W., D. Besdo, and W. Wiemer. Elastic properties of arteries: A nonlinear two-layer cylindrical model.J. Biomech., 14:389–397, 1981.

    Google Scholar 

  26. Watase, M., M. A. Awolesi, J. Ricotta, and B. E. Sumpio. Effect of pulsatile pressure on bovine smooth muscle cells (abstract).J. Vasc. Surg. 18:538, 1993.

    Google Scholar 

  27. Zenni, G. C., J. L. Gray, E. O. Appelgren, D. U. Kim, S. A. Berceli, J. Ligush, H. S. Borovetz, and H. P. Greisler. Modulation of myofibroblast proliferation by vascular prosthesis biomechanics.ASAIO J. 39:M496-M500, 1993.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorp, D.A., Raghavan, M.L., Borovetz, H.S. et al. Modeling the transmural stress distribution during healing of bioresorbable vascular prostheses. Ann Biomed Eng 23, 178–188 (1995). https://doi.org/10.1007/BF02368324

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368324

Key words

Navigation